Alan M. Turing 1936

- •first scientific calculations on digital computers
- •What are its fundamental limitations?

•Undecidable Halting Problem H: No algorithm B can always correctly ans simulator/interpreter B? Given $\langle A,\underline{x}\rangle$, does algorithm A terminate on input \underline{x} ?

Proof by contradiction: Consider algorithm B' that, on input A, executes B on $\langle A, A \rangle$ and, upon a positive answer, loops infinitely. How does B' behave on B'?

Un-/Semi-/Decidability I

Definition: a) An 'algorithm' \mathcal{A} computes a partial function $f:\subseteq \mathbb{N} \to \mathbb{N}$ if it

- on inputs $\underline{x} \in \text{dom}(f)$ prints $f(\underline{x})$ and terminates,
- on inputs $\underline{x} \notin \text{dom}(f)$ does not terminate.

Injective <u>pairing function</u> ("Hilbert Hotel") $\langle x,y \rangle := x + (x+y) \cdot (x+y+1)/2$

- b) \mathcal{A} decides set $L \subseteq \mathbb{N}$ if it computes its total char. function: $\operatorname{cf}_L(\underline{x}) := 1$ for $\underline{x} \in L$, $\operatorname{cf}_L(\underline{x}) := 0$ for $\underline{x} \notin L$.
- c) \mathcal{A} semi-decides L if terminates precisely on $\underline{x} \in L$
- d) \mathcal{A} enumerates L if L=range(f) for some computable total injective $f:\mathbb{N}\to\mathbb{N}$.

Un-/Semi-/Decidability II

Example: The Halting problem H, considered as subset of \mathbb{N} , is semi-decidable, not decidable.

Theorem: a) Every finite L is decidable.

- b) L is decidable iff its complement \overline{L} is.
- c) L is decidable iff both L, \overline{L} are semi-decidable.
- d) L is enumerable iff infinite and semi-decidable.
- b) \mathcal{A} decides set $L \subseteq \mathbb{N}$ if it computes its total charfunction: $\operatorname{cf}_L(\underline{x}) := 1$ for $\underline{x} \in L$, $\operatorname{cf}_L(\underline{x}) := 0$ for $\underline{x} \notin L$.
- c) \mathcal{A} semi-decides L if terminates <u>precisely</u> on $\underline{x} \in L$
- d) \mathcal{A} enumerates L if L=range(f) for some computable total injective $f:\mathbb{N}\to\mathbb{N}$.

Comparing Decision Problems

Halting problem $H = \{ \langle \mathcal{A}, \underline{x} \rangle : \mathcal{A}(\underline{x}) \text{ terminates } \}$ Nontriviality $N = \{ \langle \mathcal{A} \rangle : \exists y \ \mathcal{A}(\underline{y}) \text{ terminates } \}$ Totality problem $T = \{ \langle \mathcal{A} \rangle : \forall \underline{z} \ \mathcal{A}(\underline{z}) \text{ terminates} \}$

- $H \leq N$ undecidable
- $H \leq T$ undecidable
- $N \leqslant H \leqslant \overline{H}$
- $\overline{H} \leqslant T \Rightarrow T \leqslant H$

For $L,L'\subseteq\mathbb{N}$ write $L\leqslant L'$ if there is a computable $f:\mathbb{N}\to\mathbb{N}$ such that $\forall\underline{x}:\underline{x}\in L\Leftrightarrow f(\underline{x})\in L'.$ a) \overline{L}' semi-/decidable \Rightarrow so \overline{L} . b) $L\leqslant L'\leqslant L''\Rightarrow L\leqslant L''$

WHILE+ Programs

$$x_j := 0 \mid x_j := 1 \mid x_j := x_i + x_k \mid x_j := x_i \ominus x_k \mid \text{shift}$$

 $x_j := x_i \oslash 2 \mid P;P \mid \text{WHILE } x_i \text{ DO } P \text{ END}$

Syntax in Backus—Naur Form

Semantics: Input $x_1 \in \mathbb{N}$ or $(x_1, ..., x_d) \in \mathbb{N}^d$ or $\underline{x} \in \mathbb{N}^{\mathbb{N}}$ $x \ominus y = \max(0, x - y), x \oslash 2 = \lfloor x/2 \rfloor, (x_1, x_2, ...) \rightarrow (x_2, x_3, ...)$ loop as long as $x_i \neq 0$, output= $x_0 \in \mathbb{N}$,

Definitions: binary *length* of $x \in \mathbb{N}$: $\ell(x) = \lceil \log_2(1+x) \rceil$

- time of a WHILE+ program P on input $\underline{x} = (x_1, ..., x_d)$
- asymptotic time t(n): worst-case over all inputs \underline{x} with $\ell(\underline{x}) \le n$

Asymptotic Runtime

$$x_j := 0 \mid x_j := 1 \mid x_j := x_i + x_k \mid x_j := x_i \ominus x_k \mid \text{shift}$$

 $x_j := x_i \oslash 2 \mid P;P \mid \text{WHILE } x_i \text{ DO } P \text{ END}$

n	log₂n ·10s	<i>n</i> ·log <i>n</i> sec	n² msec	n³ µsec	2 ⁿ nsec
10	33sec	33sec	0.1sec	1msec	1msec
100	≈1min	11min	10sec	1sec	40 Mrd. Y
1000	≈1.5min	≈3h	17min	17min	
10 000	≈2min	1.5 days	≈1 day	11 days	
100 000	≈2.5min	19 days	4 months	32 years	

Definitions: binary *length* of $x \in \mathbb{N}$: $\ell(x) = \lceil \log_2(1+x) \rceil$

- time of a WHILE+ program P on input $\underline{x}=(x_1,...x_d)$
- **asymptotic** time t(n): worst-case over all inputs \underline{x} with $\ell(\underline{x}) \le n$

Some Complexity Classes

Definition: a) A WHILE+ program **computes** the function $f:\mathbb{N}\to\mathbb{N}$ if on input x it prints f(x) and terminates in time t(n) $n:=\ell(\underline{x})$

Polynom.growth: $\exists k \ t(n) \leq O(n^k)$; exponential: $2^{O(n^k)}$

Def: For decision problems $L \subseteq \mathbb{N}$

- $\mathcal{P} = \{ L \text{ decidable in polynomial time } \}$
- $\mathcal{NP} = \{ L \text{ verifiable in polynomial time } \}$, i.e.

 $L = \{ x \in \mathbb{N} : \exists y \in \mathbb{N}, \ \ell(y) \le \text{poly}(\ell(x)), \ \langle x, y \rangle \in V \}, \ V \in \mathcal{P}$

• $\mathcal{EXP} = \{ L \text{ decidable in exponential time } \}$

Theorem: $\mathcal{P} \subseteq \mathcal{NP} \subseteq \mathcal{EXP}$

Example Decision Problems

In an undirected graph *G*, Eulerian cycle traverses each <u>edge</u> precisely once;

Hamiltonian cycle visits each <u>vertex</u> precisely once.

G admitting a Eulerian cycle is connected and

save isolated vertices

has an even number of edges incident to each vertex

Theorem: Conversely every connected graph with an even number of edges incident to each vertex admits a Eulerian cycle.

 $\mathbf{EC} := \{ \langle G \rangle \mid G \text{ has a Eulerian cycle} \} \qquad \mathcal{NP}$

 $\mathbf{HC} := \{ \langle G \rangle \mid G \text{ has Hamiltonian cycle} \} \mathcal{NP}$

Comparing Decision Problems 2

CLIQUE = $\{ \langle G, k \rangle \mid G \text{ contains a } k\text{-clique} \}$

 $=_p$ **IS**={ $\langle G,k \rangle$: G has k pairwise non-connected vertices}

For $L,L'\subseteq\mathbb{N}$ write $L\leqslant_{\mathsf{p}}L'$ if exists a polynomial-time computable $f:\mathbb{N}\to\mathbb{N}$ such that $\forall\underline{x}\colon\underline{x}\in L\iff f(\underline{x})\in L'$ Lemma: a) $L\leqslant_{\mathsf{p}}L'\leqslant_{\mathsf{p}}L''\Rightarrow L\leqslant_{\mathsf{p}}L''$ b) $L'\in\mathcal{P}\Rightarrow L\in\mathcal{P}$

Complexity Class Picture

Def: $A \in \mathcal{NP}$ is \mathcal{NP} -complete if $L \leq_{\mathsf{D}} A$ holds for every $L \in \mathcal{NP}$.

Theorem (Cook'72/Levin'71): **SAT** is \mathcal{NP} -complete!

Lemma: For A $\mathcal{N}P$ -complete and $A \leq_p B \in \mathcal{N}P$, B is also $\mathcal{N}Pc$.

Now know ≈500 natural problems *NP*-complete...

