Computing Real Numbers

Theorem: For $r \in \mathbb{R}$ computable if the following are equivalent:

b) There exists an algorithm computing a sequence $(a_n) \subseteq \mathbb{Z}$ with $|r-a_n/2^n| \le 2^{-n}$.

c) There exist three algorithms computing sequences $(a_n),(b_n),(c_n)\subseteq\mathbb{Z}$ with $|r-a_n/b_n|\leq 1/c_n\to 0$

Ernst Specker (1949): $(c)^H \Leftrightarrow (d)$

d) There is an algorithm computing $(q_n) \subseteq \mathbb{Q}$ s.t. $q_n \rightarrow r$.

 $H=\{\langle \mathcal{A},\underline{x}\rangle: \text{ algorithm } \mathcal{A} \text{ terminates on input } \underline{x} \} \subseteq \mathbb{N}$

Computing Real Sequences

KAIST

CS493 M. Ziegler

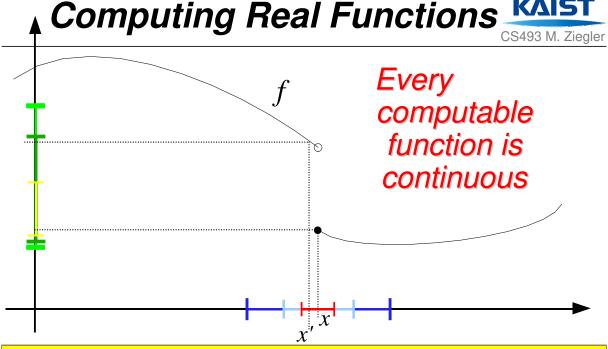
Call $(r_j) \subseteq \mathbb{R}$ computable iff an algorithm can print, on input $\langle n,j \rangle \in \mathbb{N}$, some $a \in \mathbb{Z}$ with $|r_i - a/2^n| \le 2^{-n}$.

Proposition: If (r_j) is a computable sequence s.t. $|r_j-r_i| \le 2^{-j}+2^{-i}$, then $\lim_j r_j$ is a computable real.

Example of a computable sequence $(r_j)\subseteq[0,1]$ such that $\{j:r_j\neq 0\}=H$, the Halting problem.

In numerics, don't test for (in-)equality!

 $x \in \mathbb{R}$ computable $\Leftrightarrow |x-a_n/2^n| \le 2^{-n}$ for recursive $(a_n) \subseteq \mathbb{Z}$ Call $f: \subseteq \mathbb{R} \to \mathbb{R}$ computable iff an algorithm can convert any $(a_m) \subseteq \mathbb{Z}$ with $|x-a_m/2^m| \le 2^{-m}$ into some $(b_n) \subseteq \mathbb{Z}$ with $|f(x)-b_n/2^n| \le 2^{-n}$



Call $f: \subseteq \mathbb{R} \to \mathbb{R}$ computable iff an algorithm can convert any $(a_m) \subseteq \mathbb{Z}$ with $|x-a_m/2^m| \le 2^{-m}$ into some $(b_n) \subseteq \mathbb{Z}$ with $|f(x)-b_n/2^n| \le 2^{-n}$

Mathematical Recap

- continuous function on dense dom., separability
- continuous vs. uniformly continuous $f:\subseteq \mathbb{R} \to \mathbb{R}$
- three notions of compactness
- max. of continuous function on compact set
- Weierstrass Approximation Theorem

• co-r.e. $L \subseteq \mathbb{N}$ modulus of (unif) continuity

 $|x-y| \le 2^{-\mu(n)} \Rightarrow |f(x)-f(y)| \le 2^{-n}$

König's Lemma: $X \subseteq \mathbb{Z}^{\mathbb{N}}$ is compact iff it is closed and the "tree" $X^* := \{ \bar{a} \in \mathbb{Z}^* \mid \exists \underline{b} \in \mathbb{Z}^{\mathbb{N}} : \bar{a}\underline{b} \in X \}$ of finite initial segments is finitely branching.

Computable Weierstrass Theorem

Theorem: For $f:[0,1] \rightarrow \mathbb{R}$ the following are equivalent:

- a) There is an algorithm converting any $\underline{a} = (a_m) \subseteq \mathbb{Z}$ with $|x-a_m/2^m| \le 2^{-m}$, into $(b_n) \in \mathbb{Z}$ with $|f(x)-b_n/2^n| \le 2^{-n}$
- b) There is an algorithm printing a sequence (of deg.s and coefficient lists of) $(P_n) \subseteq \mathbb{D}[X]$ with $||f - P_n||_{\infty} \le 2^{-n}$
- c) The real sequence f(q), $q \in \mathbb{D} \cap [0,1]$, is computable \wedge f admits a computable modulus of (unif) continuity

$$|x-y| \le 2^{-\mu(n)} \Rightarrow |f(x)-f(y)| \le 2^{-n}$$
 Proof: b \Leftrightarrow c \Rightarrow a \Rightarrow c

Call $(r_i) \subseteq \mathbb{R}$ computable iff an algorithm can print, on input $n, j \in \mathbb{N}$, some $q = a/2^n \in \mathbb{D}_n$ with $|r_i - q| \le 2^{-n}$. $\mathbb{D} := \bigcup_{n} \mathbb{D}_{n}, \qquad \mathbb{D}_{n} := \{ a/2^{n} : a \in \mathbb{Z} \}$

Compactness in Real Computation KAIST CS493 M. Ziegler

Lemma: Suppose \mathcal{A} converts any $\underline{a}=(a_m)\subseteq\mathbb{Z}$ with $|x-a_m/2^m| \le 2^{-m}$, $x \in [0;1]$, to (b_n) s.t. $|f(x)-b_n/2^n| \le 2^{-n}$.

- **a)** $t_{\mathcal{A}}(n):\underline{a} \to \#$ steps \mathcal{A} makes on input \underline{a} to print b_n is locally constant (=continuous) a function
- **b)** giving rise to a *modulus of* <u>local</u> *continuity* of f: $\forall x \; \exists a: \; |x-x'| \leq 2^{-t(n,\underline{a})-1} \implies |f(x)-f(x')| \leq 2^{-n+1}$
- **c)** Its domain $\{\underline{a} \in \mathbb{Z}^{\mathbb{N}}: \exists x \in [0;1] \ \forall m: |x-a_m/2^m| \le 2^{-m} \}$ is <u>compact</u> in Baire Space $\mathbb{Z}^{\mathbb{N}}$ wrt $d(\underline{a},\underline{b})=2^{-\min\{n:a_n\neq b_n\}}$
- d) and its set of finite initial segments is decidable $\{\underline{\bar{a}} \in \mathbb{Z}^{\mathbb{N}}: m \in \mathbb{N}, \ \forall i,j: -1 \le a_j \le 1 + 2^j \land |a_i/2^i - a_j/2^j| \le 2^{-i} + 2^{-j} \}$
- **e)** $t_{\mathcal{A}}: \mathbb{N} \ni n \longrightarrow \max_{a} t_{\mathcal{A}}(n,\underline{a})$ is well-def and computable

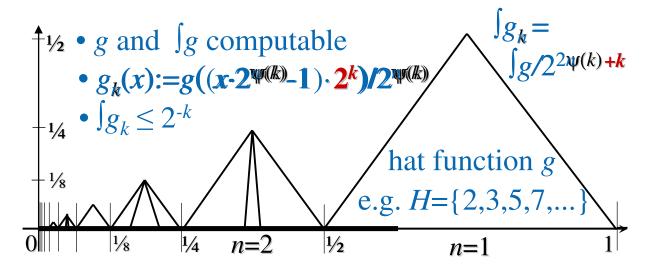
Examples of Computable Real Functions

- a) f computable \Rightarrow so is any restriction of f
- b) exp, sin, cos, ln are computable functions
- c) Let $f \in C[0,1]$ be computable. Then so are $\int_0^x f(t) dt \quad \text{and} \quad \max(f): x \to \max\{f(t): t \le x\}.$
- d) For computable $f:[-1,0] \rightarrow \mathbb{R}$, $g:[0,1] \rightarrow \mathbb{R}$ with f(0)=g(0), their join is computable.
- e) C^{∞} 'pulse' function $\varphi(t) = \exp(-t^2/1-t^2)$

To compute $f: \subseteq \mathbb{R} \to \mathbb{R}$: convert any sequence $(a_m) \subseteq \mathbb{Z}$ with $|x-a_m/2^m| \le 2^{-m}$ to $(b_n) \subseteq \mathbb{Z}$ with $|f(x)-b_n/2^n| \le 2^{-n}$

Myhill'71: uncomputable ∂ on C¹[0,1] KAIST

Recall computable bijection $\psi: \mathbb{N} \rightarrow H$



 $h' := \sum_{k \in \mathcal{G}_{lk}} g_n$ continuous, incomputable, yet $h:=\int h' \in C^1[0;1]$ computable. q.e.d.