Recap Computing Real Numbers

Theorem: For \(r \in \mathbb{R} \), the following are equivalent:

a) \(r \) has a decidable binary expansion

b) There exists an algorithm computing a sequence \((a_n) \subseteq \mathbb{Z} \) with \(|r - a_n/2^n| \leq 2^{-n} \).

c) There exist three algorithms computing sequences \((a_n), (b_n), (c_n) \subseteq \mathbb{Z} \) with \(|r - a_n/b_n| \leq 1/c_n \rightarrow 0 \).

Definition: A WHILE+ program computes \(r \in \mathbb{R} \) in polytime iff, on input \(n \) after \(\leq \text{poly}(n) \) steps, it returns some \(a_n \in \mathbb{Z} \) with \(|r - a_n/2^n| \leq 2^{-n} \).

Polytime-Computable Reals

Example: The following are polytime computable:

- sum, product, and reciprocal of polytime-computable reals
- every algebraic real
- some transcendental reals such as \(e=2.718.. \) or \(\pi \).

Definition: A WHILE+ program computes \(r \in \mathbb{R} \) in polytime iff, on input \(n \) after \(\leq \text{poly}(n) \) steps, it returns some \(a_n \in \mathbb{Z} \) with \(|r - a_n/2^n| \leq 2^{-n} \).
Computing Functions in Polytime

Recap: For $f: [0,1] \rightarrow \mathbb{R}$ the following are equivalent:

a) There is an algorithm converting any $a = (a_m) \subseteq \mathbb{Z}$ with $|x-a_m/2^m| \leq 2^{-m}$, into $(b_n) \subseteq \mathbb{Z}$ with $|f(x)-b_n/2^n| \leq 2^{-n}$

b) There is an algorithm printing a sequence (of deg.s and coefficient lists of) $(P_n) \subseteq \mathbb{D}[X]$ with $\|f-P_n\|_\infty \leq 2^{-n}$

c) The real sequence $f(q)$, $q \in \mathbb{D} \cap [0,1]$, is computable $\land f$ admits a computable modulus of continuity

Theorem: To approximate $|x-\frac{1}{2}|$ up error 2^{-n} requires polynomials of degree exponential in n.

Definition: A WHILE+ program computes $r \in \mathbb{R}$ in **polytime** iff, on input n after $\leq \text{poly}(n)$ steps, it returns some $a_n \in \mathbb{Z}$ with $|r-a_n/2^n| \leq 2^{-n}$.

Properties of Polytime Functions

Def: Computing $f: \subseteq \mathbb{R} \rightarrow \mathbb{R}$ in time $t(n)$ means to print, given $(a)_m \subseteq \mathbb{Z}$ with $|x-a_m/2^m| \leq 2^{-m}$ for $x \in \text{dom}(f)$, $(b_n) \subseteq \mathbb{Z}$ such that $|f(x)-b_n/2^n| \leq 2^{-n}$ within $t(n)$ steps.

Runtime may depend only on output precision n.

Theorem: If $f: [0;1] \rightarrow \mathbb{R}$ is computable, then so within bounded time $t(n)$ for some $t: \mathbb{N} \rightarrow \mathbb{N}$

Theorem: If $f: \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is computable in time $t(n)$, then $\mu(n):=t(n+1)+1$ is a modulus of continuity of f.

Definition: A WHILE+ program computes $r \in \mathbb{R}$ in **polytime** iff, on input n, after $\leq \text{poly}(n)$ steps, it returns some $a_n \in \mathbb{Z}$ with $|r-a_n/2^n| \leq 2^{-n}$.
Complexity of 1D Maximization

Fix polytime-comput. \(f: [0;1] \rightarrow [0;1] \) (⇒ continuous)

Max(\(f \)): \([0;1] \ni x \rightarrow \max \{ f(t): t \leq x \} \)

is computable in exponential time

is polytime-computable, provided that \(\mathcal{P} = \mathcal{NP} \)

if polytime for every (smooth) \(f \), then \(\mathcal{P} = \mathcal{NP} \):

Thm [Friedman&Ko’82]
To every \(L \in \mathcal{NP} \) exists
polytime \(C^\infty \) \(g_L: [0;1] \rightarrow \mathbb{R} \)
s.t. \([0;1] \ni x \rightarrow \max g_L|_{[0;x]} \)
again polytime iff \(L \in \mathcal{P} \)

\(\mu \) polyn. modulus of continuity

\(f \)

1/2^n

1/2^{\mu(n)}

\(g_L: t \rightarrow \sum_{\langle N,M \rangle \in V} \varphi(3tN^2-3M^2/MN)N^\ln N \)

\(\varphi(t) = \exp(-t^2/1-t^2) \)

\(C^\infty \) 'pulse' function

polytime computable

\(\mathcal{NP} \ni L = \{ N \in \mathbb{N} | \exists M < N : (N,M) \in V \} \) polytime

To every \(L \in \mathcal{NP} \) there exists a polytime computable \(C^\infty \) function \(g_L: [0;1] \rightarrow \mathbb{R} \) s.t.:
\([0;1] \ni x \rightarrow \max g_L|_{[0;x]} \) again polytime iff \(L \in \mathcal{P} \)
Complexity Conjectures in Numerics

Fix polytime \(f : [0;1] \rightarrow [0;1] \) \(\Rightarrow \) continuous

- \(\text{Max: } f \rightarrow \text{Max}(f) : x \rightarrow \max \{ f(t) : t \leq x \} \)
 - \(\text{Max}(f) \) computable in exponential time; \(\text{polyn.time-computable } \) iff \(\boldsymbol{P=NP} \)

- \(\int : f \rightarrow \int f : (x \rightarrow \int_0^x f(t) \, dt) \) \(\text{even for } f \in \mathcal{C}^\infty \)
 - \(\int f \) computable in exponential time; \(\text{polyn.time-computable } \) iff \(\boldsymbol{P=\#P} \)

- odesolve: \(C^1([0;1] \times [-1;1]) \exists f \rightarrow z : \dot{z}(t) = f(t,z), \ z(0)=0 \).
 - \(\text{PSPACE-"complete"} \)

- Solution to Poisson's Equation is classical and \(\#P-\text{"complete"} \)

\[\Delta u = f \text{ on } B_2(0,1) \]
\[u = 0 \text{ on } \partial B_2(0,1) \]

Perspective & Vision

- Computing on (σ-) compact metric spaces
- Rigorous Computability and Complexity Theory of partial differential equations (PDEs)
 - Why error bound \(2^{-n} \) rather than \(1/n \) ?
 - Why absolute errors rather than relative ?
 - Why inputs only by approximation ?

(Pure) Logic, Real/Complex/ Functional Analysis

Theoret. Computer Science

(Applied) Numerics/ Engineering