Recap Computing Real Numbers

Theorem: For $r \in \mathbb{R}$, the following are equivalent:

- a) r has a decidable binary expansion
- b) There exists an algorithm computing a sequence $(a_n) \subseteq \mathbb{Z}$ with $|r-a_n/2^n| \le 2^{-n}$.
- c) There exist three algorithms computing sequences $(a_n),(b_n),(c_n)\subseteq \mathbb{Z}$ with $|r-a_n/b_n|\leq 1/c_n \rightarrow 0$

Definition: A WHILE+ program computes $r \in \mathbb{R}$ in **polytime** iff, on input n **after \leqpoly(n)** steps, it returns some $a_n \in \mathbb{Z}$ with $|r-a_n/2^n| \leq 2^{-n}$.

Polytime-Computable Reals

Example: The following are polytime computable:

- sum, product, and reciproce of polytime-computable reals
- every algebraic real
- some transcendental reals such as e=2.718... or π .

Definition: A WHILE+ program computes $r \in \mathbb{R}$ in **polytime** iff, on input n **after** \leq **poly**(n) **steps**, it returns some $a_n \in \mathbb{Z}$ with $|r-a_n/2^n| \leq 2^{-n}$.

Computing Functions in Polytime KAIST

Recap: For $f:[0,1] \rightarrow \mathbb{R}$ the following are equivalent:

- a) There is an algorithm converting any $\underline{a} = (a_m) \subseteq \mathbb{Z}$ with $|x-a_m/2^m| \le 2^{-m}$, into $(b_n) \in \mathbb{Z}$ with $|f(x)-b_n/2^n| \le 2^{-n}$
- b) There is an algorithm printing a sequence (of deg.s and coefficient lists of) $(P_n) \subseteq \mathbb{D}[X]$ with $||f - P_n||_{\infty} \le 2^{-n}$
- c) The real sequence f(q), $q \in \mathbb{D} \cap [0,1]$, is computable \wedge f admits a computable modulus of continuity

Theorem: To approximate $|x-\frac{1}{2}|$ up error 2^{-n} <u>requires</u> polynomials of degree exponential in n.

Definition: A WHILE+ program computes $r \in \mathbb{R}$ in **polytime** iff, on input n after $\leq poly(n)$ steps, it returns some $a_n \in \mathbb{Z}$ with $|r-a_n/2^n| \le 2^{-n}$.

Properties of Polytime Functions KAIST

Def: Computing $f: \subseteq \mathbb{R} \to \mathbb{R}$ in time t(n) means to print, given $(\underline{a})_m \subseteq \mathbb{Z}$ with $|\underline{x} - \underline{a}_m/2^m| \le 2^{-m}$ for $\underline{x} \in \text{dom}(f)$, $(\underline{b}_n)\subseteq \mathbb{Z}$ such that $|f(\underline{x})-\underline{b}_n/2^n|\leq 2^{-n}$ within t(n) steps.

Runtime may depend only on output precision n.

Theorem: If $f:[0;1] \rightarrow \mathbb{R}$ is computable, then so within bounded time t(n) for some $t:\mathbb{N} \to \mathbb{N}$

Theorem: If $f: \subseteq \mathbb{R} \to \mathbb{R}$ is computable in time t(n), then $\mu(n) := t(n+1)+1$ is a modulus of continuity of f.

Definition: A WHILE+ program computes $r \in \mathbb{R}$ in **polytime** iff, on input n after $\leq poly(n)$ steps, it returns some $a_n \in \mathbb{Z}$ with $|r-a_n/2^n| \le 2^{-n}$.

Complexity of 1D Maximization

Fix polytime-comput. $f:[0;1] \to [0;1]$ (\Rightarrow continuous) $\operatorname{Max}(f): [0;1] \ni x \to \operatorname{max} \{ f(t): t \le x \}$ is computable in exponential time is polytime-computable, provided that $\mathcal{P} = \mathcal{NP}$ if polytime for every (smooth) f, then $\mathcal{P} = \mathcal{NP}$:

Thm [Friedman&Ko'82] To every $L \in \mathcal{NP}$ exists polytime $C^{\infty} g_L:[0;1] \to \mathbb{R}$ s.t. $[0;1]\ni x \to \max g_L|_{[0,x]}$ is again polytime iff $L \in \mathcal{P}$

'Max is \mathcal{NP} -hard'

 $\mathcal{NP} \ni L = \{ M \subseteq \mathbb{N} \mid \exists M < N : \in M, M \Rightarrow \in V \text{ polytein } P$

To every $L \in \mathcal{NP}$ there exists a polytime computable C^{∞} function $g_L:[0;1] \to \mathbb{R}$ s.t.: $[0;1] \ni x \to \max g_L|_{[0;x]}$ again polytime iff $L \in \mathcal{P}$

Complexity Conjectures in Numerics KAIST

CS493 M. Ziegler

Fix polytime $f:[0;1] \rightarrow [0;1]$ (\Rightarrow continuous)

• Max: $f \to \text{Max}(f)$: $x \to \text{max}\{f(t): t \le x\}$ Max(f) computable in exponential time; polyn.time-computable if $\mathbf{f} = \mathcal{NP}$

• $\int: f \to \int f: (x \to \int_0^x f(t) dt)$ **even** for $f \in C^{\infty}$ $\int f$ computable in exponential time; Polyn.time for polyn.time-computable iff P=#Panalytic $f \in C^{\omega}$

• odesolve: $C^1([0;1]\times[-1;1])\ni f\to z$: $\dot{z}(t)=f(t,z), z(0)=0$. PSPACE-"complete" [Kawamura 2010]

 Solution to Poisson's Equation $\Delta u = f$ on $B_2(\mathbf{0}, 1)$ is classical and #P-"complete" u = 0 on $\partial B_2(\mathbf{0}, 1)$ [Kawamura+Steinberg+Z., MSCS 2017

Perspective & Visioin

- Computing on (σ-) compact metric spaces
- Rigorous Computability and Complexity Theory of partial differential equations (PDEs)
 - Why error bound 2^{-n} rather than 1/n ?
 - Why absolute errors rather than relative ?
 - Why inputs only by approximation?

(Pure) Logic, Real/Complex/ **Functional Analysis**

Theoret. Computer **Science**

(Applied) **Numerics**/ **Engineering**