CS493
Summer 2018, Assignment #1

PROBLEM 1 (1P+2P*):
Recall that decision problem \(X \subseteq \mathbb{N} \) is called reducible to \(Y \subseteq \mathbb{N} \) (written \(X \preceq Y \)) if there exists a total computable function \(f : \mathbb{N} \to \mathbb{N} \) such that, for all \(x \in \mathbb{N} \), it holds: \(x \in X \iff f(x) \in Y \).

a) Prove \(T \preceq E \).
b) Prove \(E \preceq T \).

Here we recall the Totality problem \(T \) and consider the following problem:

\(E \) Given two (finite binary strings encoding) algorithms/WHILE+ programs \(A \) and \(B \), are they equivalent in the sense that, for every \(x \in \mathbb{N} \), \(A \) on input \(x \) eventually terminates iff \(B \) on input \(x \) does (although not necessarily after the same number of steps)?

\(T \) Given an algorithm/WHILE+ program \(A \), does it terminate on all possible inputs \(x \)?

PROBLEM 2 (2P):
Recall the Bachmann–Landau symbols \(\mathcal{O}, \Omega, o, \omega, \Theta \) of asymptotic growth of functions \(f, g : \mathbb{N} \to [1; \infty) \). Then classify the asymptotic growth of the following functions as logarithmic, polynomial, exponential, or in-between: (i) \(\log(n!) \), (ii) \(n^{\log n / \log \log n} \), (iii) \(2^{(\log n)^2} \).

PROBLEM 3 (2P+1P):

a) Devise a WHILE+ program with one argument \(x \) computing \(2^x \).
b) Devise a WHILE+ program with argument \(x \) computing the exponential tower \(2^{2^\cdots^2} \) of height \(x \).

PROBLEM 4 (1P+1P+1P+1P):
Prove these connections between decision problems \(L \subseteq \mathbb{N} \) and discrete functions \(f : \mathbb{N} \to \mathbb{N} \):

a) Each step of a WHILE+ program with variables \((x_0, \ldots, x_d) = \vec{x} \) can increase \(\ell(\vec{x}) := \max\{\ell(x_0), \ldots, \ell(x_d)\} \) by at most one.
b) If \(f \) can be computed in polynomial time, there exists a \(k \in \mathbb{N} \) with \(\ell(f(x)) \leq O(\ell(x)^k) \) for all \(x \in \mathbb{N} \), where \(\ell(x) = \lceil \log_2(1+x) \rceil \) denotes the binary length of \(x \).
c) If \(f \) can be computed in polynomial time, then the following decision problems lies in \(\mathcal{P} \):

\[
\text{Subgraph}(f) = \{ \langle x, y \rangle : x \in \mathbb{N}, y \leq f(x) \}
\]

for the Pairing Function \(\langle x, y \rangle = x + (x+y) \cdot (x+y+1)/2 \) computable and invertible in polynomial time.
d) If \(\text{Subgraph}(f) \) is decidable in polynomial time and \(\ell(f(x)) \leq O(\ell(x)^k) \) holds for some \(k \) and all \(x \), then \(f \) is computable in polynomial time.