CS493

Summer 2018, Assignment #1

PROBLEM 1 (1P+2P*):

Recall that decision problem $X \subseteq \mathbb{N}$ is called *reducible* to $Y \subseteq \mathbb{N}$ (written $X \preccurlyeq Y$) if there exists a total computable function $f : \mathbb{N} \to \mathbb{N}$ such that, for all $x \in \mathbb{N}$, it holds: $x \in X \Leftrightarrow f(x) \in Y$.

- a) Prove $T \preccurlyeq E$.
- b) Prove $E \preccurlyeq T$.

Here we recall the Totality problem T and consider the following problem:

- *E*) Given two (finite binary strings encoding) algorithms/WHILE+ programs \mathcal{A} and \mathcal{B} , are they equivalent in the sense that, for every $x \in \mathbb{N}$, \mathcal{A} on input *x* eventually terminates iff \mathcal{B} on input *x* does (although not necessarily after the same number of steps)?
- T) Given an algorithm/WHILE+ program A, does it terminate on *all* possible inputs x?

PROBLEM 2 (2P):

Recall the Bachmann–Landau symbols $\mathcal{O}, \Omega, o, \omega, \Theta$ of asymptotic growth of functions $f, g : \mathbb{N} \to [1;\infty)$. Then classify the asymptotic growth of the following functions as logarithmic, polynomial, exponential, or in-between: (i) $\log(n!)$, (ii) $n^{\log\log n/\log n}$, (iii) $2^{(\log n)^2}$.

PROBLEM 3 (2P+1P):

- a) Devise a WHILE+ program with one argument *x* computing 2^x .
- b) Devise a WHILE+ program with argument x computing the exponential tower $2^{2^{+}}$ of height x

PROBLEM 4 (1P+1P+1P+1P):

Prove these connections between decision problems $L \subseteq \mathbb{N}$ and discrete functions $f : \mathbb{N} \to \mathbb{N}$:

- a) Each step of a WHILE+ program with variables $(x_0, ..., x_d) = \vec{x}$ can increase $\ell(\vec{x}) := \max\{\ell(x_0), ..., \ell(x_d)\}$ by at most one.
- b) If *f* can be computed in polynomial time, there exists a $k \in \mathbb{N}$ with $\ell(f(x)) \leq O(\ell(x)^k)$ for all $x \in \mathbb{N}$, where $\ell(x) = \lceil \log_2(1+x) \rceil$ denotes the binary length of *x*.
- c) If f can be computed in polynomial time, then the following decision problems lies in \mathcal{P} :

Subgraph
$$(f) = \{ \langle x, y \rangle : x \in \mathbb{N}, y \le f(x) \}$$

for the Pairing Function $\langle x, y \rangle = x + (x+y) \cdot (x+y+1)/2$ computable and invertible in polynomial time.

d) If Subgraph(*f*) is decidable in polynomial time and $\ell(f(x)) \leq O(\ell(x)^k)$ holds for some *k* and all *x*, then *f* is computable in polynomial time.