§5 Randomization: Motivation

Simple polyn.-time decision whether a (not necessarily bipartite nor planar) graph admits a perfect matching.

Let x_{ij} , $1 \le i \le j \le n$, denote variables and consider Tutte's skew-symmetric *symbolic* matrix A_G with entries $a_{ij} := x_{ij}$ if $\{i,j\} \in E$ and $i \le j$ $a_{ij} := -x_{ji}$ if $\{i,j\} \in E$ and $i \ge j$ (a) $a_{ij} := 0$ otherwise.

 $det(A_G) = \sum_{\pi} \operatorname{sign}(\pi) \cdot a_{1,\pi(1)} \cdot a_{2,\pi(2)} \cdot a_{3,\pi(3)} \cdots a_{n,\pi(n)}$

- is an n^2 -variate integer polynomial of total degree n
- that can be *evaluated* using $O(n^3)$ tests & arith. op.s
- is identically zero iff G has no perfect matching!

Recall: A perfect matching in a graph G=(V,E) of |V|=2n vertices is a set $M \subseteq E$ of n edges without common vertices.

Lemma on Tutte's Determinant

 $\frac{\det(A_G) = \sum_{\pi} \operatorname{sign}(\pi) \cdot a_{1,\pi(1)} \cdot a_{2,\pi(2)} \cdot a_{3,\pi(3)} \cdots a_{n,\pi(n)}}{\text{is identically zero iff } G \text{ has } no \text{ perfect matching!}}$

 $a_{ij} := x_{ij}$ if $\{i,j\} \in E$ and i < j $a_{ij} := -x_{ji}$ if $\{i,j\} \in E$ and i > j $a_{ij} := 0$ otherwise.

CS500 M. Ziegler

Proof ' \Rightarrow ' A perfect matching is a permutation $\mu: V \rightarrow V$ s.t. $\forall i: \{i, \mu(i)\} \in E$ (*) and all cycles have length 2. Let $x_{i,\mu(i)}:=1$, $x_{ij}:=0$ for $j \neq \mu(i)$. Then $\det(A_G)(\underline{x})=1$ (why?) ' \Leftarrow ' Let $\det(A_G) = \sum_{\pi \text{ has odd cycle}} + \sum_{\pi \text{ only of even cycles}}^{m}$ Then $\sum_{\pi}'=0$. Let π consist of only even cycles s.t. (*). This gives rise to a perfect matching. *negative* sign **Recap:** symmetry, cycle decompos., multivar. polyn.

Polynomial Identity Testing

 $det(A_G) = \sum_{\pi} sign(\pi) \cdot a_{1,\pi(1)} \cdot a_{2,\pi(2)} \cdot a_{3,\pi(3)} \cdots a_{n,\pi(n)}$ • is identically zero iff *G* has *no* perfect matching;

• n^2 -var. polyn., <u>evaluated</u> using Gauss.Elim. in O(n^3)

Recap (by example): The *total degree* of $x^2 \cdot y^3$ is 5. Univariate polynom. of degree *d* has (at most) *d* roots.

Lemma (*Schwartz-Zippel*): Fix domain *D*, finite $S \subseteq D$, and let $0 \neq p \in D[x_1, ..., x_n]$ have total degree $\leq d$. Sample $r_1, ..., r_n$ from *S* independently uniformly at random (*iid*). **Then** (*) Pr [$p(r_1, ..., r_n)=0$] $\leq d/|S|$. Let *j* max s.t. $p_j \neq 0$ **Proof (induct):** $0 \neq p(x_1, ..., x_n) = \sum_{0 \leq j \leq d} p_j(x_1, ..., x_{n-1}) \cdot x_n^j$ (*) $\leq \Pr[p_j(r_1, ..., r_{n-1})=0] + \Pr[p(r_1, ..., r_n)=0 \mid p_j(r_1, ..., r_{n-1})\neq 0]$ Pr [*A*] = Pr [$A \land B$] + Pr [$A \land \neg B$] $\leq \Pr[B]$ + Pr [$A \mid \neg B$] $\cdot \Pr[\neg B]$

Error Amplification (Decision)

<u>One</u>-sided error:

Suppose algorithm \mathcal{A} , when reporting **true**, is always correct; but answer **false** may be erroneous with probability p < 1. Error probability p^k

k-times repeat A; if <u>all</u> report **false**, report **false**.

Fact (Hoeffding): Let $X_1, ..., X_k$ be independent random variables in [0;1], $\underline{X} := (X_1 + ... + X_k)/k$. Then

$\mathbb{P}\left[\underline{X} - \mathbb{E}[\underline{X}] \geq t \right] \leq e^{-2kt^2}$

<u>Two</u>-sided error:

Suppose algorithm \mathcal{B} errs with probability $p < \frac{1}{2}$. *k*-times repeat \mathcal{B} and report the <u>majority</u> answer.

Markov Chain Algorithm for 3SAT

- 1-sided error: Suppose <u>z</u> is a satisfying assignment
- and <u>y</u> guessed in line 3 differs from <u>z</u> at ℓ places.
- After one iteration of innermost loop (lines 5 to 8):
- With probability $\geq \frac{1}{3}$ differs <u>y</u> only at $\leq \ell -1$ places.
- Loop arrives at *y*=*z* 1 Given 3CNF term $\varphi(x_1, \dots, x_n)$ with probability $\geq (\frac{1}{3})^{\ell}$. 2 Repeat K times: Naïve choice 3 Guess assignment $\underline{y} \in \{0,1\}^n$ $k:=\ell:=n/2$ and $K:=3^k$. 4 Repeat k times: • Better $k:=\ell:=n/4$ and 5 If $\varphi(\underline{y})=1$, accept and stop. $K := 3^k \cdot 2^n / \binom{n}{k} \approx (1.5)^n$ 6 C be 1st clause in φ st C(y)=0 • Current record *k*:=3*n* Guess a literal in C (1 of 3), 7 8 flip its assigned value in y. and $K := (4/3^n)$ runtime $(1.33)^n \cdot \text{poly}(n) \stackrel{9 \text{ Reject!}}{}$ $1/(\overline{n_{cn}}) \approx c^{cn} \cdot (1-c)^{(1-c)n}$