§8 Approximation KAIRD

Lemma: i) The vertices of any maximal matching
constitute a vertex cover. *+

ii) The latter is at most twice
as large as a minimal one.

Example a) maximal matching (size 2)
b) largest matching (size 4) .

Theorem: Greedy algorithm for maximal matching
yields factor-2 approximation to minVC in time O(|E]).

A matching in G is a subset
MOE wherein no two edges share a vertex.

VC := { (G,k) | G has a vertex cover of size <k }

Approximating metric TSP KAIST

CSSOO M. Ziegler
MTSP = { (G,w,k) | G with metric edge weights w:VxV—-N
admits a Hamiltonian circuit of weighted length <k }

Input: w:VxV—N edge weights symmetric and

s.t. triangle inequality holds: w(a,c) < w(a,b) + w(b,c)
Sought: Tour (permutation 1 of V) of least weight
Decision problem MTSP still NP-complete

[Christofides’'76]

Polytime approximating minMTSP up to factor 2:
1. Compute minimum spanning tree T of (G,w).
2. Traverse T depth-first pre-order

ETSP with VORY, w(a,b) = |la-b||, NP-hard, but in NP 2




Proof of Approximation Ratio KAIST
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w weights with 3-inequality, Tis MST traversed in-order

Let F denote the sequence of edges pursued in-order,
C the tour thus obtained, C* an optimal tour.

For edges e,,...e, abbreviate L(e,,...e;) :=w(e))+...+w(e)
(i) L(T) < L(C¥*), because removing any edge from C*
yields a spanning tree of cost <L(C%#)

Every edge of T appears precisely twice in F:

(i) L(F) =2-I(T)
(iii) L(C) < L(F)
because 3-inequal.
= L(C)s L(F) =
2-L(T) € 2-L(C%)

Input: n packets, values v,,...v [N
and weights w,...w, [IN |

and weight/value bounds W, V¢
Question: Is there a subset
SU{1,...n} s.t. values mes v, 2 | %4 i
subject to weight bound mes w,s W

Now: Find S's.t. 2. 1o w,< Wand 2, v, 2 V-(1-€)
Or: Find §" s.t. mes" w,< W-(1+€) and ZpDS”vp\EV
Algorithm: guaranteed approximation ratio 1+€
Discrete optimization — decision often NP-hard

Try approximating maxim./minim. up to relative error




KAIST
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For SO{1,...n} write w(S)=2 55w, and v(S)=2 v,
Goal: Given W, determine V := max { v(S): w(S)SW }
Consider T(v,m) := min { w(S) : SO{1,...m}, v(S)>v }

Dynamic Programming: Knapsack

Note: i) 7(0,n) <T(1,n) <...<T(V,n) < W < T(V+1,n)

i) V=max {v:T(v,n) < W} \"l 0l 11..1n

i) T(v,m) =0 for v=0 V 01010010

iv) T(»,0) = = for v>0 I |

V) Tom) = e e e
min { 7(v,m-1) , O<v§ IR B e

w,+T(v-v, ,m-1) } runtime poly(n+V)

FPTAS for Knapsack =T

Scaling Lemma a) For 0sy'<y, V(") £ V(v)
b)and forv=sd<=(k,...k):V(v-d) 2 V(v) - n-k

c) Also, V(k-v) = k - V(v) vk < vk k<]
Scaling Method: Fix kLN and let v/ := va/kJ
Compute V':=k- V(v/,...,v,) In time poly(n+V/k). So
V= VW) > Voke 1) = Venk = Ve(1-n-kIV)S V-(1-8)
for k=l mal<e-vin | )57 0| VIk Orle+1)

Theorem: For every given €>0, can approximate
Knapsack up to error 1-¢ in time polynom. in n+l/¢

V(vy...v,) =max{ 2 ggv,: SO{l.n}, 2 now, S W]



.. i i KAIST
Limits of Approximation

Theorem: No polynom.-time algorithm can approximate
the general TSP up to some constant unless P=N7P.

Proof: Supposexq approximates TSP up to factor cLIN.
Turn A into algorith

Algorithm 3B, input graph
Define w(u,v) :=1 for {u,v}UE;
w(u,v) ;= n-cfor {u,v}LE.

No triangle-
inequality...

(G)LUHC = w contains Hamiltonian cycle of weight n
= algorithm A finds some of weight <n-c

(G)UHC = any Hamiltonian cycle has weight > n-c

HC := { (G) | graph G contains a Hamiltonian cycle }
TSP := { (G,w,k) | (G,w) contains a Hamiltonian cycle of weight <k }

In-/Approximability =T

CS500 M. Ziegler

Can approximate in polynomial time:

= Knapsack up to error 1-€ for any fixed €>0

SR L ARATT

= VertexCover up to error 1+1=2
= metricTSP up to error 2

= Clique up to error n, trivially

Unless P=NP, cannot approximate

= (general) TSP up any to constant error
= CLIQUE up to error O(n'¢) [Johan Hastad'96]



