§8 Approximation

Lemma: i) The vertices of any *maximal* matching constitute a vertex cover.

ii) The latter is at most twice as large as a *minimal* one.

b) largest matching (size 4)

Theorem: Greedy algorithm for maximal matching yields factor-2 approximation to **min**VC in time O(|E|).

A *matching* in *G* is a subset $M \subseteq E$ wherein no two edges share a vertex. $\mathbf{VC} := \{ \langle G, k \rangle \mid G \text{ has a vertex cover of size } \leq k \}$

Approximating metric TSP

MTSP = { $\langle G, \underline{w}, k \rangle \mid G$ with metric edge weights $\underline{w}: V \times V \rightarrow \mathbb{N}$ admits a Hamiltonian circuit of weighted length $\leq k$

Input: $w:V\times V\to \mathbb{N}$ edge weights <u>symmetric</u> and s.t. <u>triangle</u> inequality holds: $w(a,c) \le w(a,b) + w(b,c)$ **Sought:** Tour (permutation π of V) of least weight Decision problem MTSP still \mathcal{NP} -complete

[Christofides'76]

Polytime approximating **minMTSP** up to factor 2:

- 1. Compute minimum spanning tree T of (G,w).
- 2. Traverse *T* depth-first pre-order

Proof of Approximation Ratio KAIST

<u>w</u> weights with 3-inequality, T is MST traversed in-order

Let *F* denote the sequence of edges pursued in-order, C the tour thus obtained, C^* an optimal tour.

For edges $e_1, \dots e_k$ abbreviate $L(e_1, \dots e_k) := w(e_1) + \dots + w(e_k)$

(i) $L(T) \le L(C^*)$, because removing any edge from C^* yields a spanning tree of cost $\leq L(C^*)$

Every edge of *T* appears precisely twice in *F*:

(ii)
$$L(F) = 2 \cdot L(T)$$

(iii)
$$L(C) \le L(F)$$
 because 3-inequal.

$$\Rightarrow L(C) \le L(F) = 2 \cdot L(T) \le 2 \cdot L(C^*)$$

Approximation Schemes

Input: n packets, values $v_1, ..., v_n \in \mathbb{N}$ and weights $w_1,...w_n \in \mathbb{N}$ and weight/value bounds W,V

Question: Is there a subset

 $S \subseteq \{1,...n\}$ s.t. values $\sum_{p \in S} v_p \ge V^{\frac{3}{2}}$

Or: Find S'' s.t. $\sum_{p \in S''} w_p \le W \cdot (1 + \varepsilon)$ and $\sum_{p \in S''} v_p \ge V$

Algorithm: guaranteed approximation ratio 1±ε

Discrete optimization \rightarrow decision often \mathcal{NP} -hard Try approximating maxim./minim. up to relative error

Dynamic Programming: Knapsack KAIST CS500 M. Ziegler

For $S \subseteq \{1,...n\}$ write $w(S) = \sum_{p \in S} w_p$ and $v(S) = \sum_{p \in S} v_p$

Goal: Given W, determine $V := \max \{ v(S) : w(S) \le W \}$

Consider $T(v,m) := \min \{ w(S) : S \subseteq \{1,...m\}, v(S) \ge v \}$

Note: i) $T(0,n) \le T(1,n) \le ... \le T(V,n) \le W \le T(V+1,n)$

ii)
$$V = \max \{ v : T(v,n) \le W \}$$

iii)
$$T(v,m) = 0$$
 for $v \le 0$

iv)
$$T(v,0) = \infty$$
 for $v>0$

v)
$$T(v,m) = \begin{cases} w.l.o.g. \\ 0 < w_p \le W \\ 0 < v_p \le V \end{cases}$$

 $w_m + T(v-v_m, m-1)$

$v \setminus m$	0	1	• • •	n
0	0	0	0	0
1	8			
2	8		×	
	8		+	\geq_T

runtime poly(n+V)

FPTAS for Knapsack KAIST CS500 M. Ziegler

Scaling Lemma a) For $0 \le v' \le v$, $V(v') \le V(v)$

b) and for $\underline{v} \le \underline{d} \le (k, ...k)$: $V(\underline{v} - \underline{d}) \ge V(\underline{v}) - n \cdot k$

c) Also,
$$V(k \cdot \underline{v}) = k \cdot V(\underline{v})$$

$$v-k < \lfloor v/k \rfloor \cdot k \le v$$

Scaling Method: Fix $k \in \mathbb{N}$ and let $v_p' := \lfloor v_p/k \rfloor$

Compute $V' := k \cdot V(v_1', ..., v_n')$ in time poly(n+V/k). So

$$V' = V(\lfloor \underline{v}/k \rfloor \cdot k) \ge V(\underline{v}-k \cdot \underline{1}) \ge V - n \cdot k = V \cdot (1 - n \cdot k/V) \ge V \cdot (1 - \varepsilon)$$

$$V' = V(\lfloor \underline{v}/k \rfloor \cdot k) \ge V(\underline{v} - k \cdot \underline{1}) \ge V - n \cdot k = V \cdot (1 - n \cdot k/V) \ge V \cdot (1 - \varepsilon)$$
 for $k :\approx \lfloor \varepsilon \cdot \sum_{p} v_{p}/n^{2} \rfloor \le \varepsilon \cdot V/n$
$$\begin{array}{c} 0 < v_{p} \le V \Longrightarrow \\ V \le \sum_{p} v_{p} \le nV \end{array}$$

$$V/k \le O(n^{2}/\varepsilon + 1)$$

Theorem: For every given $\varepsilon > 0$, can approximate Knapsack up to error 1- ε in time polynom. in $n+1/\varepsilon$

$$V(v_1,...v_n) := \max\{ \sum_{p \in S} v_p : S \subseteq \{1..n\}, \sum_{p \in S} w_p \le W \}$$

Limits of Approximation

Theorem: No polynom.-time algorithm can approximate the general TSP up to some constant unless $\mathcal{P}=\mathcal{NP}$.

Proof: Suppose \mathcal{A} approximates TSP up to factor $c \in \mathbb{N}$.

Turn \mathcal{A} into algorithm \mathcal{B} for HC:

Algorithm \mathcal{B}_r , input graph G=(V,E), n:=|V|.

Define w(u,v) := 1 for $\{u,v\} \in E$; No triangle $w(u,v) := n \cdot c$ for $\{u,v\} \notin E$. inequality...

 $\langle G \rangle \in \mathbf{HC} \implies w$ contains Hamiltonian cycle of weight n

 \Rightarrow algorithm \mathcal{A} finds some of weight $\leq n \cdot c$

 $\langle G \rangle \notin \mathbf{HC} \implies \text{any Hamiltonian cycle has weight } n \cdot c$

 $\mathbf{HC} := \{ \langle G \rangle \mid \text{graph } G \text{ contains a Hamiltonian cycle } \}$

TSP := { $\langle G, w, k \rangle \mid (G, w)$ contains a Hamiltonian cycle of weight $\leq k$ }

In-/Approximability

Can approximate in polynomial time:

- **Knapsack** up to error 1-ε for any fixed ε>0
- VertexCover up to error 1+1=2
- metricTSP up to error 2
- Clique up to error *n*, trivially

Unless $P = \mathcal{N}P$, can<u>not</u> approximate

• CLIQUE up to error $O(n^{1-\varepsilon})$ [Johan Håstad'96]

