§2 Computability over the Reals

a) Computing Real Numbers

- Three equivalent notions,
- counter/examples, oracle-computable reals

b) Computing Real Sequences

- semi-decidability / strong undecidability of Equality
- every computable sequence misses a computable Real

c) Computing Real Functions

- •closure properties: composition, restriction, sequences
- necessarily continuous
- Computable Weierstrass Theorem
- quantitative continuity

§2 Computability over the Reals

d/e) <u>Un</u>/computability with Real Functions

- un/computable Derivative
- un/computable Wave Equation
- un/computable Root Finding

f) Multi-Functions & Enrichment

- generalized restriction, fundamental theorem of algebra
- real computation, fuzzy sign/Heaviside,
- Archimedian property, linear algebra, analytic functions

g) Computing Real Operators

- Encoding continuous functionsUniform computability
- Encoding compact subsetsBoolean Set Operations

a) Computing Real Numbers

Theorem: For $r \in \mathbb{R}$, the following are equivalent: Def: Call $r \in \mathbb{R}$ computable if a) r has a decidable binary expansion

$$\{n:b_n=1\}\subseteq\mathbb{N} \text{ for } r=\sum_n b_n/2^n.$$

- b) There exists an algorithm computing a sequence $(a_n) \subseteq \mathbb{Z}$ with $|r-a_n/2^n| \leq 2^{-n}$.
- c) There exist algorithms computing three sequences $(a_m),(b_m),(c_m)\subseteq \mathbb{Z}$ with $|r-a_m/b_m| \leq 1/c_m \rightarrow 0$

Ernst Specker (1949): $(c)^H \Leftrightarrow (d)$

oracle

d) There is an algorithm computing $(q_n) \subseteq \mathbb{Q}$ s.t. $q_n \rightarrow r$.

 $H=\{\langle \mathcal{A},x\rangle: \text{ algorithm } \mathcal{A} \text{ terminates on input } x\} \subseteq \mathbb{N}$

Proofs (Sketches)

Theorem: For $r \in \mathbb{R}$, the following are equivalent:

- a) r has a decidable binary expansion $\{n: h=1\}$ $\subset \mathbb{N}$ for $r=\sum_{n=1}^{\infty} h/2^n$
 - $\{n:b_n=1\}\subseteq\mathbb{N} \text{ for } r=\sum_n b_n/2^n.$
- b) There exists an algorithm computing a sequence (a_n) $\subseteq \mathbb{Z}$ with $|r-a_n/2^n| \le 2^{-n}$.
- c) There exist algorithms computing three sequences $(a_m),(b_m),(c_m)\subseteq \mathbb{Z}$ with $|r-a_m/b_m| \leq 1/c_m \to 0$

Lemma: For $r \in \mathbb{R}$ and $(a_n) \subseteq \mathbb{Z}$ with $|r - a_n/2^n| \le 2^{-n}$,

 $r < 0 \iff \exists n: a_n < 1 \text{ and } r > 0 \iff \exists n: a_n > 1$

Lemma: For $|x-y| \le 1/2^{n+1}$, $a := \lfloor y \cdot 2^n \rfloor$ has $|x-a/2^n| \le 2^{-n}$

Examples: Computable Reals

- a) Every dyadic rational has two binary expansions
- b) Every rational has a computable binary expansion
- c) If a,b are computable, so are a+b, $a\cdot b$, 1/a ($a\neq 0$)
- d) Fix $p \in \mathbb{R}[X]$. Then p's coefficients are computable $\Leftrightarrow p(x)$ is computable for all computable x.
- e) Every algebraic number is computable; and so is π .
- f) If x is computable, then so are $\exp(x)$, $\sin(x)$, $\log(x)$
- g) Specker's sequence $(\sum_{m < j, t(m) < j} 2^{-m})_j$ is "computable", where $\{0,1,2,\ldots,\infty\}$ $\ni t(\langle \mathcal{A},x\rangle):=\#$ steps \mathcal{A} makes on x.

Compute r: on input $n \in \mathbb{N}$ output $a \in \mathbb{Z}$ st. $|r-a/2^n| \le 2^{-n}$

Oracle-Computable Reals

$$\mathcal{P} = (x_j := 0, 1 \mid x_j := x_i \pm x_k \mid x_j := x_i \div 2 \mid x_j := \varphi(x_i) \mid \mathcal{P}; \mathcal{P} \mid \text{WHILE } x_j \text{ DO } P \text{ END })$$

Fix some arbitrary total $\phi:\mathbb{N}\to\mathbb{N}$

Real Limit Lemma: If <u>computable</u> sequence (r_j) converges, then $r:=\lim_j r_j$ is computable <u>with oracle</u> H. And to every real r computable <u>with oracle</u> H, there is a <u>computable</u> sequence (r_i) with $r=\lim_i r_i$.

g) Specker's sequence $(\sum_{m < j, t(m) < j} 2^{-m})_j$ is "computable", where $\{0, 1, 2, \infty\}$ $\ni t(\langle \mathcal{A}, x \rangle) := \# \text{steps } \mathcal{A} \text{ makes on } x.$

Compute r: on input $n \in \mathbb{N}$ output $a \in \mathbb{Z}$ st. $|r-a/2^n| \le 2^{-n}$

b) Computing Real Sequences KAISI CS700 M. Ziegler

Def: Compute sequence $(r_i) \subseteq \mathbb{R}$: on input $\langle n,j \rangle \in \mathbb{N}$ output some $a=a_{n,i}\in\mathbb{Z}$ with $|r_i-a/2^n|\leq 2^{-n}$.

Proposition: If (r_i) is a computable sequence s.t. $|r_i-r_i| \le 2^{-j}+2^{-i}$, then $\lim_i r_i$ is a computable real.

Proposition: If (r_i) is a computable sequence, then $\{j: r_i \neq 0\}$ is semi-decidable.

In numerics, don't test for (in-)equality!

Examples: a) 1/j! is a computable sequence.

- **b)** $cf_H(j) \in \{0,1\}$ is an *un*computable sequence.
- **c)** $r_i := 1/2^{t(j)} \in [0,1]$ is a computable sequence with $\{j:r_i\neq 0\}=H$, the Halting problem.

Any computable real sequence misses some computable real

Def: Compute sequence $(r_j) \subseteq \mathbb{R}$: on input $\langle n,j \rangle \in \mathbb{N}$ output some $a = a_{n,j} \in \mathbb{Z}$ with $|r_j - a/2^n| \le 2^{-n}$.

Proof (Diagonalization):

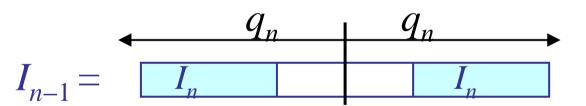
Consider 'diagonal' sequence $q_n := a_{2n+2,n}/2^{2n+1} \in \mathbb{Q}$.

Inductively define nested intervals $I_n \subseteq I_{n-1}$ of width $1/3^n$

such that $r_n \notin I_n$.

Hence $\{x\} = \bigcap_n I_n$

with computable $x \neq r_n$.



- b) computing a sequence $(a_n) \subseteq \mathbb{Z}$ with $|r-a_n/2^n| \le 2^{-n}$.
- c) computing three sequences (a_m) , (b_m) , $(c_m) \subseteq \mathbb{Z}$ with $|r-a_m/b_m| \le 1/c_m \to 0$

c) Computing Real Functions KAISI CS700 M. Ziegler

Def: Compute sequence $(r_i) \subseteq \mathbb{R}$: on input $\langle n,j \rangle \in \mathbb{N}$ output some $a=a_{n,i}\in\mathbb{Z}$ with $|r_i-a/2^n|\leq 2^{-n}$.

Def: To compute $f: \subseteq \mathbb{R} \to \mathbb{R}$ means:

Convert any $(a_m)\subseteq \mathbb{Z}$ with $|x-a_m/2^m| \leq 2^{-m}$, $x \in \text{dom}(f)$,

to some $(b_n)\subseteq \mathbb{Z}$ with $|y-b_n/2^n| \le 2^{-n}$, y=f(x).

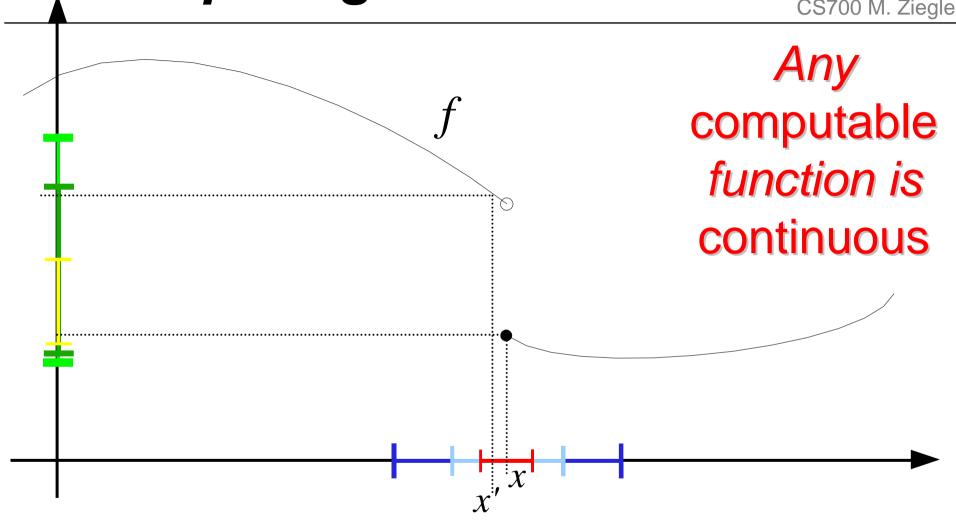
Behave arbitrarily for $x \notin dom(f)$ or $\exists m: |x-a_m/2^m| > 2^{-m}$

Lemma: a) If $f: \subseteq \mathbb{R} \to \mathbb{R}$ is computable and $(r_i) \subseteq \text{dom}(f)$ are computable, then $f(r_i)$ is a computable sequence.

- b) Computable functions are closed under composition
- c) Any restriction of a comput. function is computable.

Compute r: on input $n \in \mathbb{N}$ output $a \in \mathbb{Z}$ st. $|r-a/2^n| \le 2^{-n}$

Computing Real Functions



Def: Convert any $(a_m) \subseteq \mathbb{Z}$ with $|x-a_m/2^m| \le 2^{-m}$, to some $(b_n) \subseteq \mathbb{Z}$ with $|y-b_n/2^n| \le 2^{-n}$, y=f(x).

Computable Weierstrass Theorem

Theorem: For $f:[0,1] \rightarrow \mathbb{R}$ the following are equivalent:

- a) There is an algorithm <u>converting</u> any $\underline{a}=(a_m)\subseteq \mathbb{Z}$ with $|x-a_m/2^m| \le 2^{-m}$, to $(b_n)\in \mathbb{Z}$ with $|f(x)-b_n/2^n| \le 2^{-n}$
- b) There is an algorithm <u>printing</u> a sequence (of deg.s and coefficient lists of) $(P_n) \subseteq \mathbb{D}[X]$ with $||f P_n||_{\infty} \le 2^{-n}$
- c) The real 'sequence' f(q), $q \in \mathbb{D} \cap [0,1]$, is computable $\land f$ admits a computable modulus of (unif) continuity

$$|x-y| \le 2^{-\mu(n)} \implies |f(x)-f(y)| \le 2^{-n}$$

Proof: $b \Leftrightarrow c \Rightarrow a \Rightarrow c$

$$\mathbb{D}_n := \{ a/2^n : a \in \mathbb{Z} \}, \qquad \mathbb{D} := \bigcup_n \mathbb{D}_n,$$

Quantitative Continuity

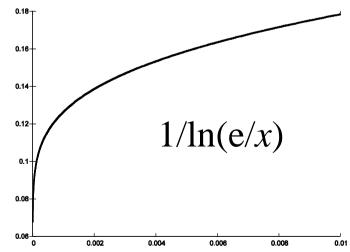
Definition: Fix metric spaces (X,d) and (Y,e).

A modulus of continuity of $f:(X,d) \rightarrow (Y,e)$ is any $\mu: \mathbb{N} \rightarrow \mathbb{N}$ such that $d(x,x') \leq 2^{-\mu(n)}$ implies $e(f(x),f(x')) \leq 2^{-n}$

If $f:X \to Y$ has μ and $g:Y \to Z$ has ν , then $g \circ f$ has $\mu \circ \nu$.

Example: Lipschitz-continuous \Leftrightarrow modulus $\mu(n) \le n + O(1)$

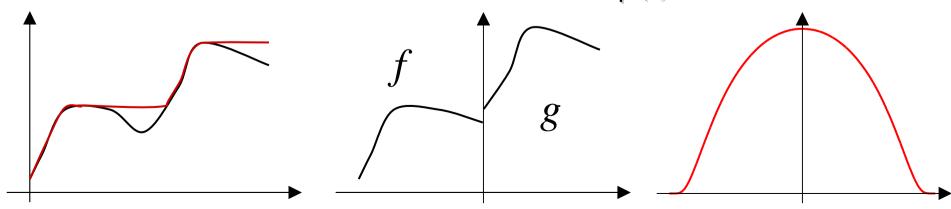
- b) Hölder-continuous \Leftrightarrow modulus $\mu(n) \leq O(n)$
- c) $h: [0;1] \ni x \to 1/\ln(e/x) \in [0;1]$ has (only) exponential modulus.



d) $h \circ h$: (only) doubly exponential modulus.

Examples of Computable Real Functions

- a) +, -, \times , \div , $\sqrt{}$, exp, \log_e , \sin , \cos are computable
- b) Let $f \in C[0,1]$ be computable. Then so are $f: x \to \int_0^x f(t) dt$ and $\max(f): x \to \max\{f(t): t \le x\}$.
- c) For computable $f:[-1,0] \rightarrow \mathbb{R}$, $g:[0,1] \rightarrow \mathbb{R}$ with f(0)=g(0), their join is computable.
- d) C^{∞} 'pulse' mollifier $\varphi(t) = \exp(-t^2/1-t^2)$ for -1 < t < 1, $\varphi(t) = 0$ otherwise.



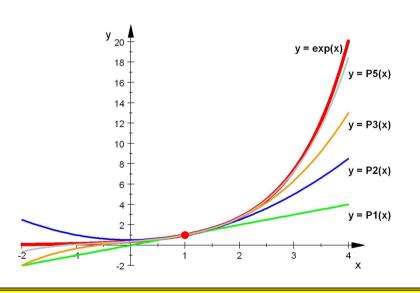
Example Proofs (Sketch)

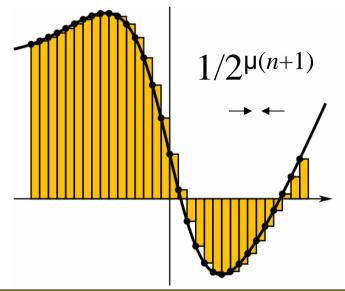
a) $\exp:\mathbb{R} \to \mathbb{R}$ is a computable function

$$|\exp(t) - (1+t+t^2/2+t^3/6+...+t^n/n!)| \le 1/2^n \text{ for } |t| \le 1$$

 $\exp(t+k) = \exp(t) \cdot \exp(1) \cdot \exp(1), k \in \mathbb{N}$

b) $f \in C[0,1]$ computable $\Rightarrow \max(f):x \rightarrow \max\{f(t):t \le x\}$





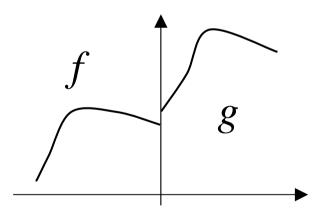
To compute $f:K \subseteq \mathbb{R} \to \mathbb{R}$: compute real 'sequence' f(q), $q \in \mathbb{D} \cap K$; and compute *modulus* of continuity $\mu:\mathbb{N} \to \mathbb{N}$

Example Proofs (continued)

a) $\exp:\mathbb{R} \to \mathbb{R}$ is a computable function

b) $f \in C[0,1]$ computable \Rightarrow so are $\int f: x \rightarrow \int_0^x f(t) dt$ and $\max(f): x \rightarrow \max\{f(t): t \le x\}$

c) For computable $f:[-1,0] \rightarrow \mathbb{R}$, $g:[0,1] \rightarrow \mathbb{R}$ with f(0)=g(0), their join is computable.



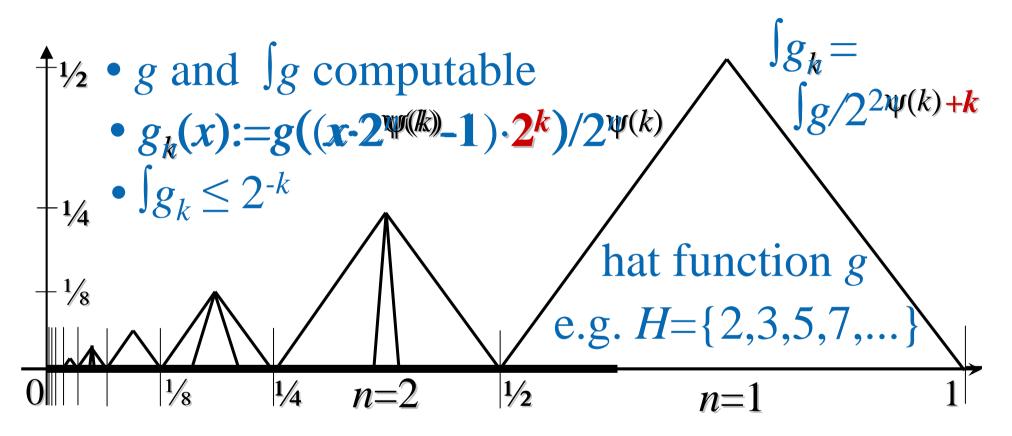
To compute $f:K \subseteq \mathbb{R} \to \mathbb{R}$: compute real 'sequence' f(q), $q \in \mathbb{D} \cap K$; and compute *modulus* of continuity $\mu:\mathbb{N} \to \mathbb{N}$

d) *Un*computability with Real Functions CS700 M. Ziegler

- [Myhill'71]: uncomputable derivative
 - Sufficient condition for computable derivative
- [Pour-El&Richards'81]: uncomputable Wave Equation
 - [Weihrauch&Zhong'02] computable Wave Equation
- [Specker'59]: uncomputable argmin/root
 - Computable Intermediate Value Theorem
- Computable "singular" covering of all computable reals "Any computable functional is continuous!"

Uncomputable $\partial: C^1[0,1] \rightarrow C[0,1]$

Recall computable bijection $\psi: \mathbb{N} \to H$



$$h':=\sum_{k\in\mathcal{S}_{lk}}g_n$$
 continuous, *un*computable, yet $h:=\int h'\in C^1[0;1]$ computable.

e) Computable Derivative

Theorem: Suppose C^1 $f:[0;1] \rightarrow \mathbb{R}$ is computable.

Then f' is again computable iff f' has a *computable* modulus of continuity μ' .

Proof: Given $x \in \mathbb{R}$, $n \in \mathbb{N}$, output $(f(x+\delta)-f(x))/\delta$. $\delta := 2^{-\mu'(n)}$

Then $f'(y) = (f(x+\delta)-f(x))/\delta$ for some $y \in [x,x+\delta]$:

Mean Value Theorem. By hypothesis, $f'(y) - f'(x) / \le 2^{-n}$.

Corollary: Suppose C^{∞} $f:[0;1] \rightarrow \mathbb{R}$ is computable. Then <u>each</u> derivative $f^{(k)}$, $k \in \mathbb{N}$, is again computable.

Uncomputable Wave Equation

Recall: computable $h \in \mathbb{C}^1[0,1]$

3D Kirchhoff's formula:

with *un*computable h'(1)

$$u(t, \vec{x}) = \frac{\partial}{\partial t} \left(\frac{1}{4\pi t} \int_{|\vec{y} - \vec{x}| = t} f(\vec{y}) \, d\sigma(\vec{y}) \right)$$

$$+ \frac{1}{4\pi t} \int_{|\vec{y} - \vec{x}| = t} g(\vec{y}) \, d\sigma(\vec{y})$$

$$f(\vec{x}) := h(|\vec{x}|^2)$$

$$u(t,0) = \frac{d}{dt}(h(t^2) \cdot t) = h'(t^2) \cdot 2t^2 + h(t^2)$$

$$\frac{\partial^2}{\partial t^2} u(\underline{x},t) = \Delta u(\underline{x},t), \quad u(\underline{x},0) = h(|\underline{x}|^2) \quad \partial/\partial t \ u(\underline{x},0) = 0$$

Computable Wave Equation

Example (spherical coord): $f(r \cdot \sin\theta \cdot \cos\varphi, r \cdot \sin\theta \cdot \sin\varphi, r \cdot \cos\theta)$

$$:= (r-1)\cdot(2-r)\cdot(\varphi-\pi/6)\cdot(\pi/4-\varphi) \text{ for } 1\leq r\leq 2, \pi/6\leq \varphi\leq \pi/4.$$

$$:= 0 \text{ otherwise}$$

$$u(t, \vec{x}) = \frac{\partial}{\partial t} \left(\frac{1}{4\pi t} \int_{|\vec{y} - \vec{x}| = t} f(\vec{y}) \, d\sigma(\vec{y}) \right)$$

 $\Rightarrow u(1,0,0,0) \neq 0 = u(1,0,0,\epsilon) \ \forall \epsilon \neq 0$: spatial discontinuity

[Weihrauch&Zhong'02] Sobolev space solution computable!

Mathematically well-known loss of regularity "one derivative":

$$u(t,0) = \frac{d}{dt}(h(t^2) \cdot t) = h'(t^2) \cdot 2t^2 + h(t^2)$$

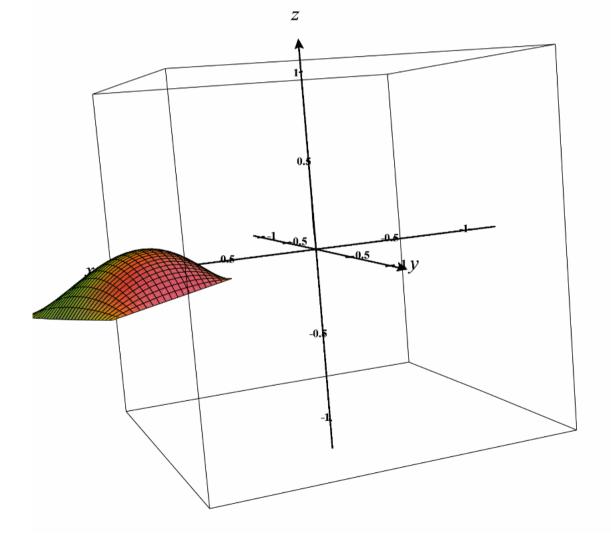
"Any computable functional is continuous!"

Discontinuous Wave Equation

Example (spherical coord): $f(r \cdot \sin\theta \cdot \cos\varphi, r \cdot \sin\theta \cdot \sin\varphi, r \cdot \cos\theta)$

 $:= (r-1)\cdot(2-r)\cdot(\varphi-\pi/6)\cdot(\pi/4-\varphi)$ for $1 \le r \le 2$, $\pi/6 \le \varphi \le \pi/4$.

:= 0



Computable rootof

Computable Intermediate Value Theorem:

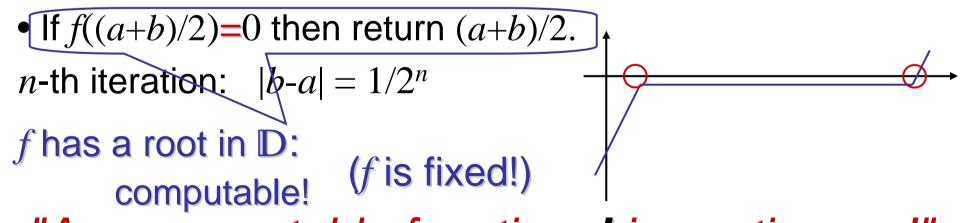
Suppose $f:[0;1] \rightarrow [-1;1]$ is computable with f(0) < 0 < f(1). Then f has some computable root $x \in [0;1]$ with f(x)=0.

Proof (Bisection):

Initially a:=0, b:=1.

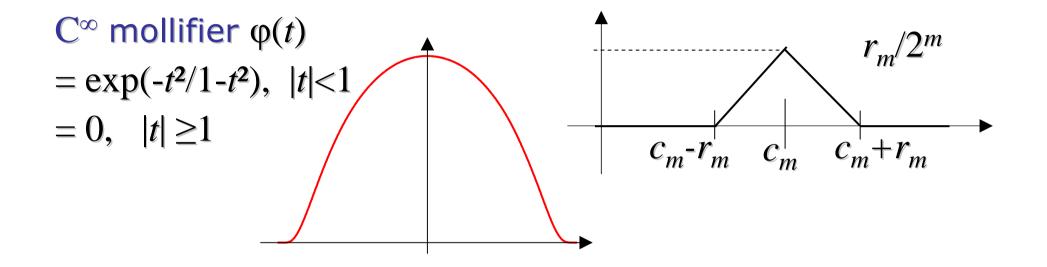
f has (at least one) root in [a;b].

- If f((a+b)/2)<0 then let a:=(a+b)/2 and continue.
- If f((a+b)/2)>0 then let b:=(a+b)/2 and continue.



"Any computable functional is continuous!"

Computable Urysohn



Proof: Let
$$f(t) := \sum_m \varphi(r_m - |t - c_m|)/2^m$$

Lemma: Let $(c_m)_m$, $(r_m)_m \subseteq \mathbb{D}$ be computable sequences. There exists a computable \mathbb{C}^{∞} function $f:[0;1] \to [0;1]$ such that $f^1[0] = [0;1] \setminus \bigcup_m (c_m - r_m, c_m + r_m)$.

Uncomputable argmin, rootof KAISI

Lemma: There exist computable sequences

$$(c_m)_m$$
, $(r_m)_m \subseteq \mathbb{D}$ such that $U := \bigcup_m (c_m - r_m, c_m + r_m)$ contains all computable reals in [0;1]

and has measure $\leq \frac{1}{2}$.

approximating a root vs. approximate root

Corollary: There is a computable $C^{\infty} f:[0;1] \rightarrow [0;1]$ such that $f^1[0]$ has measure $\geq \frac{1}{2}$ but contains no computable real number.

Lemma: Let $(c_m)_m$, $(r_m)_m \subseteq \mathbb{D}$ be computable sequences. There exists a computable \mathbb{C}^{∞} function $f:[0;1] \rightarrow [0;1]$ such that $f^{1}[0] = [0;1] \setminus \bigcup_{m} (c_{m} - r_{m}, c_{m} + r_{m})$.

"A countable real set has measure 0" -

Lemma: There exist

sequences

$$(c_m)_m$$
, $(r_m)_m \subseteq \mathbb{D}$ such that $U := \bigcup_m (c_m - r_m, c_m + r_m)$ covers any fixed countable subset of $[0;1]$

and has measure ≤½.

\mathcal{P} computes $r \in \mathbb{R}$

iff prints sequence $a_n \subseteq \mathbb{Z}$ with $|a_n/2^n - a_m/2^m| \le 2^{-n} + 2^{-m}$

Proof idea (diagonalize against <u>all</u> \mathcal{P}):

Simulate program \mathcal{P} What if \mathcal{P} does not until it outputs $(a_0,a_1,...a_{\langle\mathcal{P}\rangle+4})\in\mathbb{Z}^*$ produce infinite output?

$$\text{s.t. } 0 \leq a_n \leq 2^n, \ |a_n/2^n - a_m/2^m| \leq 2^{-n} + 2^{-m} \ \forall n,m \leq \langle \mathcal{P} \rangle + 4$$

and let
$$c_{\langle \mathcal{P} \rangle} := a_{\langle \mathcal{P} \rangle + 4}/2^{\langle \mathcal{P} \rangle + 4}$$
 and $r_{\langle \mathcal{P} \rangle} := 1/2^{\langle \mathcal{P} \rangle + 3}$.

U has measure $\leq \sum_{\langle P \rangle} 2r_{\langle P \rangle} = 1/2$.

d) *Un*/computability with Real Functions CS700 M. Ziegler

- [Myhill'71]: uncomputable derivative
 - Sufficient condition for computable derivative
- [Pour-El&Richards'81]: uncomputable Wave Equation
 - [Weihrauch&Zhong'02] computable Wave Equation
- [Specker'59]: uncomputable argmin/root
 - Computable Intermediate Value Theorem
- Computable "singular" covering of all computable reals "Any computable functional is continuous!"

f) Multifunctions

A partial $\underline{\textit{multi}}$ function $G: \subseteq X \Rightarrow Y$ is a relation $G\subseteq X \times Y / \textit{set}$ function $G: X \to \mathcal{P}(Y)$

- Aka non-extensional "functions"
- Unavoidable in <u>real</u> computation!

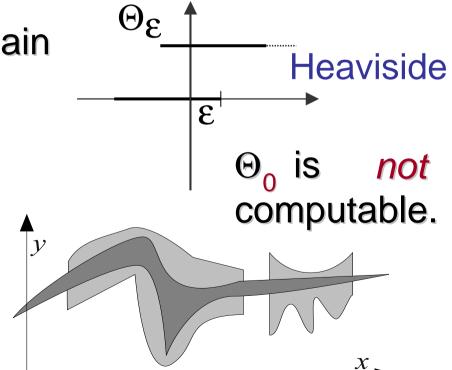
Any computable function is continuous

Restriction $F \sqsubseteq G$: smaller domain and/or *larger* range(s).

Function problem:

Input x, output y=G(x);

not necessarily all $y \in G(x)$



Computable Multifunctions

A partial \underline{multi} function $G:\subseteq X \Rightarrow Y$ is a relation $G\subseteq X\times Y/\overline{set}$ function $G:X\to P(Y)$

Archimedian Property of the Reals:

There *is* a computable *multi*function $f: \mathbb{R} \Rightarrow \mathbb{Z}$ with $f(r) \ge r$.

Any computable function is continuous

Fundamental Theorem of Algebra: in which order?? Given $a_0, ... a_{d-1} \in \mathbb{C}$, return roots $x_1, ... x_d \in \mathbb{C}$ of monic $a_0 + a_1 \cdot X + ... + a_{d-1} \cdot X^{d-1} + X^d \in \mathbb{C}[X]$ incl. multiplicities

Def: Compute $f: \subseteq \mathbb{R} \Rightarrow \mathbb{R}$:

Convert any $(a_m)\subseteq \mathbb{Z}$ with $|x-a_m/2^m| \le 2^{-m}$, $x \in \text{dom}(f)$, to some $(b_n)\subseteq \mathbb{Z}$ with $|y-b_n/2^n| \le 2^{-n}$, $y \in f(x)$.

Enrichment in Linear Algebra

- rank: $\mathbb{R}^{d\times d} \rightarrow \mathbb{N}$ discontinuous, uncomputable
 - Gauss' Algorithm: pivoting = test for in/equality
 - dimension/basis of kernel/range, eigenvectors: uncomputable
- rank: $\subseteq \mathbb{R}^{d \times d} \times \mathbb{N} \ni (A, r = \operatorname{rank}(A)) \rightarrow \operatorname{rank}(A) \in \mathbb{N}$ trivial
 - kernelbasis: (A, r=rank(A)) $\bigoplus \mathbb{R}^{d\times r}$ Computable! [Algorithm: r rounds of LUPQ decomposition with full pivoting...]
 - eigenbasis: $\{(A,\delta): \text{ symmetric } A \in \mathbb{R}^{d \times (d-1)/2}$ $\delta := \text{Card } \sigma(A)$ has <u>exactly</u> $\delta \in \mathbb{N}$ <u>distinct</u> eigenvalues $\} \Rightarrow \mathbb{R}^{d \times d}$ Computable!

"*Enrichment*": G.Kreisel&A.Macintyre p.238/239 in "The L.E.J. Brouwer Centenary Symposium"1982 (Troelstra&van Dalen edt.s)

REAL **diagonalize(int d, REAL **matrix);
canonical declaration int nDistinctEValues);

More Examples of *Enrichment*

Recall: Suppose C^2 $f:[0;1] \rightarrow \mathbb{R}$ is computable.

Then f' is again computable !

But must "know" some bound $B \in \mathbb{N}$ on f''!

Recall: Computable Intermediate Value Theorem

Suppose $f:[0;1] \rightarrow [-1;1]$ is computable with f(0) < 0 < f(1).

Then f has some computable root $x \in [0;1]$ with f(x)=0.

Enrichment: root∈ D or "promise": no root∈ D

Consider power series $f(z) = \sum_{m} c_{m} \cdot z^{m}$, $c_{m} \in \mathbb{C}$ computable.

Radius of converg. $0 < R = 1/\limsup_{m} |c_m|^{1/m}$.

Fix any r < R. $\exists B \in \mathbb{N} \ \forall m$: $|c_m| \le B/r^m$.

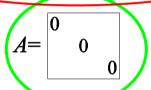
 \Rightarrow computable tail bound $|\sum_{m>M} c_m \cdot z^m| \leq$ geometric series.

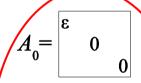
(d-1)-fold Advice does not suffice for dxd Symmetric Matrix Diagonalization

0	0
0	0

3	0
0	0

в	3	
3	3	



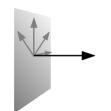


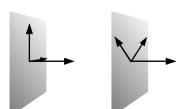
$$A_1 = \begin{bmatrix} \varepsilon & \varepsilon \\ \varepsilon & \varepsilon \\ & 0 \end{bmatrix}$$

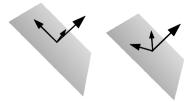
ε+δ ε-δ	ε+δ	ε-δ	-δ
$\epsilon+\delta$ $\epsilon-\delta$ $\epsilon-\delta$ $\epsilon+\delta$	ε-δ	ϵ - δ ϵ + δ	δ
0	-δ	δ	δ
$=A_{10}$	$=A_{11}$		
1 1 0	1		1

1	ì	0	1	-1	1
1	-1	0	1	1	-1
0	0	1	0	1	2









g) Computing Real Operators

Compute $r \in \mathbb{R}$: print sequence $(a_n) \subseteq \mathbb{Z}$ st. $|r - a_n/2^n| \le 2^{-n}$

Recall: To compute $f:K \subseteq \mathbb{R} \to \mathbb{R}$ means:

Convert any $(a_m)\subseteq \mathbb{Z}$ with $|x-a_m/2^m| \le 2^{-m}$, $x \in \text{dom}(f)$, to some $(b_n)\subseteq \mathbb{Z}$ with $|y-b_n/2^n| \le 2^{-n}$, y=f(x).

Equivalent (Weierstraß): <u>print</u> a sequence (of degrees and coefficient lists of) $(P_n) \subseteq \mathbb{D}[X]$ with $||f - P_n||_{\infty} \le 2^{-n}$

Definition: To compute $\Xi:\subseteq C(K) \to C(K')$ means: Convert any $(P_m)\subseteq D[X]$ with $||f-P_m||_\infty \le 2^{-m}$, $f\in dom(\Xi)$, to some $(Q_n)\subseteq D[X]$ with $||g-Q_n||_\infty \le 2^{-n}$, $g=\Xi(f)$.

Any computable functional/operator is continuous!

Non/uniform Un/computability

Non-uniform computability: "If f is computable, so is $\Lambda(f)$ ".

Stronger *uniform* computability: " $\Lambda: f \to \Lambda(f)$ is computable"

Applies also to *un*computable f, requires way of encoding f!

Uniformly computable

 \Rightarrow continuous.

Discontinuous:

- $\partial: C^1[0,1] \rightarrow C[0,1]$
- rootof

Definition: To compute $\Xi:\subseteq C(K) \to C(K')$ means:

Convert any $(P_m) \subseteq \mathbb{D}[X]$ with $||f - P_m||_{\infty} \le 2^{-m}$, $f \in \text{dom}(\Xi)$,

to some $(Q_n) \subseteq \mathbb{D}[X]$ with $||g - Q_n||_{\infty} \le 2^{-n}$, $g = \Xi(f)$.

Any computable functional/operator is continuous!

Uniformly Computable Op.s

- a) Pointwise addition, multiplication are computable.
- **b)** Composition $(f,g) \rightarrow g \circ f$ is computable. So is **join**.
- c) The operators \int and $\max()$ are computable, where $\int f: x \rightarrow \int^x f(t) dt$ and $\max(f): x \rightarrow \max\{f(t): t \le x\}$.
- d) Uncomputable: $\bullet \partial: C^1[0,1] \to C[0,1]$ \bullet rootof

Definition: To compute $\Xi:\subseteq C(K) \to C(K')$ means: Convert any $(P_m)\subseteq D[X]$ with $||f-P_m||_\infty \le 2^{-m}$, $f\in dom(\Xi)$, to some $(Q_n)\subseteq D[X]$ with $||g-Q_n||_\infty \le 2^{-n}$, $g=\Xi(f)$.

Non-uniform: "Fix computable f,g. Then f+g is computable"

Encoding Compact Subsets

Mark Braverman

Examples/applications: Computing Fractals

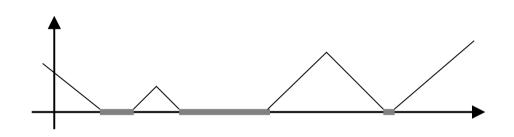
IN MATHEMATICS

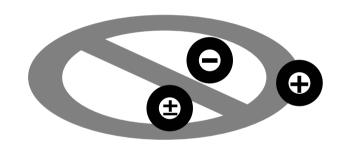
Michael Yampolsky

Def: Call $A \in \mathcal{K}(X)$ computable if

Computability of Julia Sets

- a) the distance function d_A is computable
- **b)** the soft characteristic *multi*function 2_A is computable





Soft characteristic *multi*function of $A \subseteq X$:

$$2_A(x,n) = + \text{ if } d_A(x) \le 2^{-n}, \ 2_A(x,n) = - \text{ if } d_A(x) \ge 2^{-n-1}$$

(*X*,*d*) metric space

Distance function of $A \subseteq X$: $d_A: X \ni \underline{x} \rightarrow \inf\{ d(\underline{x},\underline{a}) : \underline{a} \in A \} \in \mathbb{R}$

 $\mathcal{K}(X) = \{ \text{ non-empty compact subsets of topolog. space } X \}$

Un/computable Set Operations

$$d_A:X\ni x\to\inf\{\ d(x,a):a\in A\ \}\in\mathbb{R}$$

$$2_A(x,n) = + \text{ if } d_A(x) \le 2^{-n},$$

Def: Call $A \in \mathcal{K}(X)$ computable

$$2_A(x,n) = - \text{ if } d_A(x) \ge 2^{-n-1}$$

- a) if the distance function d_A is computable
- **b)** if the soft characteristic *multi*function 2_A is computable

Theorem: (a) and (b) are equivalent [even uniformly].

Proof, a) \Rightarrow b): immediate.

b)
$$\Rightarrow$$
 a): scan grid of width 2^{-n-1}

$$= 2^{-n}$$

$$d_{\cdot}(x) = ? \pm 2^{-n}$$

Theorem (Boolean operations on compact sets):

- a) \cup is computable: $\sqrt{}$
- **b)** \cap is *un*computable:

§2 Computability over the Reals

a) Computing Real Numbers

- Three equivalent notions,
- counter/examples, oracle-computable reals

b) Computing Real Sequences

- semi-decidability / strong undecidability of Equality
- every computable sequence misses a computable Real

c) Computing Real Functions

- •closure properties: composition, restriction, sequences
- necessarily continuous
- Computable Weierstrass Theorem
- quantitative continuity

§2 Computability over the Reals

d/e) <u>Un</u>/computability with Real Functions

- un/computable Derivative
- un/computable Wave Equation
- un/computable Root Finding

f) Multi-Functions & Enrichment

- generalized restriction, fundamental theorem of algebra
- real computability, fuzzy sign, Archimedian property
- •linear algebra, analytic functions

g) Computing Real Operators

- Encoding continuous functionsUniform computability
- Encoding compact subsetsBoolean Set Operations