§3 Computability on Topological Spaces

a) Basic Spaces

- Cantor/Baire Space, Computation
- Cost, Continuity, Compactness

b) Representations

- Definition, Real Examples revisited
- Realizers, Multi/Functions between Represented Spaces
- (Continuous) Reduction between Representations
- Standard/Admissible representations; Main Theorem
- Sequences, Continuous Functions, Compact Subsets

a) Basic Spaces

Classical/discrete/countable data processing: $\{0,1\}^*$, \mathbb{Z}^* Input/process/output of (*finite* sequences of) bits or integers. Other data (e.g. graphs) encode over *finite* no. bits/integers.

Universe of *continuum* cardinality, such as \mathbb{R} , C(K), $\mathcal{K}(X)$: Encode over *infinite* sequences of bits/integers.



Def: Output $\underline{u} \in C$ or $\underline{u} \in \mathcal{B}$: Print the sequence u_0, u_1, u_2, \dots

Output in time $t:\mathbb{N} \to \mathbb{N}$: u_n appears after $\leq t(n)$ steps.

Computing on Basic Spaces

Def: Output $\underline{u} \in C$ or $\underline{u} \in \mathcal{B}$: Print the sequence u_0, u_1, u_2, \dots

Output in time $t:\mathbb{N}\to\mathbb{N}$: u_n appears after $\leq t(n)$ steps.

Def: Compute $F:\subseteq \mathcal{B} \to \mathcal{B}$: On input $\underline{u} \in \text{dom}(F)$, output $F(\underline{u})$.

Behave arbitrarily on other inputs

regardless of $\underline{u} \in \text{dom}(F)$

Compute in time $t:\mathbb{N} \to \mathbb{N}$: $F(u)_n$ appears after $\leq t(n)$ steps.

Example: $F(\underline{u}) = 111..$ if #initial 0s in \underline{u} is **odd**

 $F(\underline{u}) = 000..$ if #initial 0s in \underline{u} is **even**

 $t_{\mathcal{A}}(\underline{\boldsymbol{u}},n) := \text{\#steps algor.} \mathcal{A} \text{ makes on input } \underline{\boldsymbol{u}} \text{ until } n\text{-th output.}$

Main Lemma: a) Every computable $F:\subseteq \mathcal{B} \to \mathcal{B}$ is continuous.

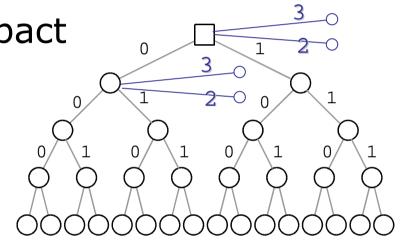
- **b)** F computable in time $t \Rightarrow t$ is a modulus of continuity of F.
- c) partial $\underline{u} \rightarrow t_{\mathcal{A}}(\underline{u},n)$ is locally constant/continuous.
- **d)** dom(F) compact, \mathcal{A} computes $F \Rightarrow$ has time bound t=t(n)

Compactness in Basic Spaces

Reminder a) Cantor space $C = \{0,1\}^{\mathbb{N}}$ is compact.

- **b)** A subset *X* of a compact set is compact iff *X* is closed.
- c) Baire space $\mathcal{B} = \mathbb{Z}^{\mathbb{N}}$ is *not* compact.

König's Lemma: $X \subseteq \mathbb{Z}^{\mathbb{N}}$ is compact iff it is closed and the set $X^* := \{ \bar{a} \in \mathbb{Z}^* \mid \exists \underline{b} \in \mathbb{Z}^{\mathbb{N}} : \bar{a} \underline{b} \in X \}$ of finite initial segments is <u>finitely branching</u>.



Main Lemma: a) Every computable $F:\subseteq \mathcal{B} \rightarrow \mathcal{B}$ is continuous.

- **b)** F computable in time $t \Rightarrow t$ is a modulus of continuity of F.
- c) partial $\underline{u} \rightarrow t_{\mathcal{A}}(\underline{u},n)$ is locally constant/continuous.
- **d)** dom(F) compact, \mathcal{A} computes $F \Rightarrow$ has time bound t=t(n)

b) Representations

binary:
$$r = \sum_{n} c_{n} 2^{-n}, \ \hat{c} = (c_{n}) \in C$$

$$\beta:\subseteq C \rightarrow [0;1]$$

rational:
$$|r - a_{2n}/a_{2n+1}| \le 1/n$$

$$\rho:\subseteq C \rightarrow [0;1]$$

dyadic:
$$|r - a_n/2^n| \le 2^{-n}$$

$$(\operatorname{bin}(a_n)) \in C$$

$$\delta:\subseteq C \rightarrow [0;1]$$

Recall equivalence: r has (a) decidable binary expansion

- b) computable sequence $(a_n) \subseteq \mathbb{Z}$ with $|r a_{2n}/a_{2n+1}| \le 1/n$
- c) computable sequence $(a_n) \subseteq \mathbb{Z}$ with $|r-a_n/2^n| \le 2^{-n}$.

Def: A representation of a set X is a surjective partial mapping $\xi: \to X$.

A ξ -name of $x \in X$ is any u with $\xi(\underline{u}) = x$.

(Computing) Multi/Functions between Represented Spaces

binary:
$$r = \sum_{n} c_n 2^{-n}, \ \hat{c} = (c_n) \in C$$

$$\beta:\subseteq C \rightarrow [0;1]$$

rational:
$$|r - a_{2n}/a_{2n+1}| \le 1/n$$

$$\rho:\subseteq C \rightarrow [0;1]$$

dyadic:
$$|r - a_n/2^n| \le 2^{-n}$$

$$(bin(a_n)) \in C$$

$$\delta:\subseteq C \rightarrow [0;1]$$

Observe: For \underline{u} a ξ -name of $x \in X$ and F a (ξ, v) -realizer of $f: X \Longrightarrow Y$, $F(\underline{u})$ is a v-name of $y \in f(x)$.

 $X \xrightarrow{f} Y$ $\uparrow v$ $R \xrightarrow{F} R$

For F a (ξ, v) -realizer of $f: X \Rightarrow Y$ and G a (v, ζ) -realizer of $g: Y \Rightarrow Z$, $G \circ F$ is a (ξ, ζ) -realizer of $g \circ f$.

Computing $f:X \Rightarrow Y$ means to compute a (ξ,v) -realizer.

restriction

A (ξ, v) -realizer of $f: X \Rightarrow Y$ is a $F: \text{dom}(\xi) \rightarrow \text{dom}(v)$ s.t. $f \circ \xi \sqsubseteq v \circ F$.

Def: A representation of a set X is a surjective partial mapping $\xi: \to X$.

A ξ -name of $x \in X$ is any \underline{u} with $\xi(\underline{u}) = x$.

Reduction between Representations

binary:
$$r = \sum_{n} c_{n} 2^{-n}, \ \hat{c} = (c_{n}) \in C$$

$$\beta:\subseteq C \rightarrow [0;1]$$

rational:
$$|r - a_{2n}/a_{2n+1}| \le 1/n$$

$$\rho:\subseteq C \rightarrow [0;1]$$

dyadic:
$$|r - a_n/2^n| \le 2^{-n}$$

$$\delta:\subseteq C \rightarrow [0;1]$$

Examples:
$$\beta \leq \rho$$
, $\beta \leq \delta$, $\delta \leq \rho$, $\rho \leq \delta$, $\rho \nleq \beta$, $\delta \nleq \beta$.

Def: Continuous reduction ξ'

*
<!-- The state of the state of

means a (ξ',ξ) -realizer of $id:X \rightarrow X$.

Computing $f:X \Rightarrow Y$ means to compute a (ξ, v) -realizer.

Reduction $\xi' \leq \xi$ means cont. $F: dom(\xi') \rightarrow dom(\xi)$ st. $\xi' \sqsubseteq \xi \circ F$

Def: A representation of a set X is a surjective partial mapping $\xi: \to X$.

A ξ -name of $x \in X$ is any \underline{u} with $\xi(\underline{u}) = x$.

transitive

Domains of Representations

binary:
$$r = \sum_{n} c_{n} 2^{-n}, \ \hat{c} = (c_{n}) \in C$$

$$\beta:\subseteq C \rightarrow [0;1]$$

rational:
$$|r - a_{2n}/a_{2n+1}| \le 1/n$$

$$\rho:\subseteq C \rightarrow [0;1]$$

dyadic:
$$|r - a_n/2^n| \le 2^{-n}$$

$$\delta:\subseteq C \rightarrow [0;1]$$

Examples:
$$\beta \underline{\prec} \rho$$
, $\beta \underline{\prec} \delta$, $\delta \underline{\prec} \rho$, $\rho \underline{\prec} \delta$, $\rho \underline{\prec} \beta$, $\delta \underline{\prec} \beta$.

Examples: dom(p) is <u>not</u> compact,

 $dom(\beta)$, $dom(\delta)$ <u>are</u> compact. König's

Lemma

Recall: dom(F) compact, \mathcal{A} computes $F \Rightarrow$ has time bound t

König's Lemma: $X \subseteq \mathbb{Z}^{\mathbb{N}}$ is compact iff it is closed and the set $X^* := \{ \bar{a} \in \mathbb{Z}^* \mid \exists b \in \mathbb{Z}^{\mathbb{N}} : \bar{a} \ b \in X \}$ of finite initial segments is finitely branching.

Admissible Representations

binary:
$$r = \sum_{n} c_{n} 2^{-n}, \ \hat{c} = (c_{n}) \in C$$

$$\beta:\subseteq C \rightarrow [0;1]$$

rational:
$$|r - a_{2n}/a_{2n+1}| \le 1/n$$

$$\rho:\subseteq C \rightarrow [0;1]$$

dyadic:
$$|r - a_n/2^n| \le 2^{-n}$$

$$\delta:\subseteq C \rightarrow [0;1]$$

Examples: $\beta \leq \rho$, $\beta \leq \delta$, $\delta \leq \rho$, $\rho \leq \delta$, $\rho \leq \beta$, $\delta \leq \beta$.

Examples: $dom(\beta)$, $dom(\delta)$ compact, $dom(\rho)$ <u>not</u> compact

Examples: β is <u>not</u> admissible. ρ and δ <u>are</u> admissible.

Def: Representation ξ of X is **admissible** if (i) is continuous and (ii) every continuous representation ξ' of X has: $\xi' \leq \xi$.

Reduction $\xi' \leq \xi$ means cont. $F: dom(\xi') \rightarrow dom(\xi)$ st. $\xi' \subseteq \xi \circ F$

Main Theorem [KW'85]: Fix admissible $\xi: \to X$ and $v: \to Y$. $f: X \to Y$ is continuous **iff** it has a continuous (ξ, v) -realizer.

Standard Representation

"Kolmogorov" 700 M. Ziegler

Def: Fix a topological T_0 space X with subbasis O_n , $n \in \mathbb{N}_+$. The standard representation ξ of X (wrt. O_n) is the following: A ξ -name of $x \in X$ is a list of all $n \in \mathbb{N}$ (in any order) with $x \in O_n$.

Theorem: The standard representation <u>is</u> admissible.

Proof: (i) $\xi^{-1}[O_n \cap O_m] = \bigcup_{k,\ell} \{ \underline{u} \in \mathcal{B} : u_k = n \wedge u_\ell = m \} \text{ open } \sqrt{(ii)} \xi' \preceq \xi \text{ for every continuous (not necessarily surj.)} \xi' : \to X$ Let $F(\underline{v})_{\langle m,j \rangle} := m$ if $\xi'[(v_0,v_1 \dots v_j) \circ \mathbb{Z}^{\mathbb{N}}] \subseteq O_m$, := 0 else.

Def: Representation ξ of X is **admissible** if (i) is continuous and (ii) every continuous representation ξ' of X has: $\xi' \leq \xi$.

Reduction $\xi' \preceq \xi$ means cont. $F: \operatorname{dom}(\xi') \to \operatorname{dom}(\xi)$ st. $\xi' \sqsubseteq \xi \circ F$ Representation of X is a surjective partial mapping $\xi: \to X$. \mathbb{N} -Pairing bijection "Hilbert Hotel" $\langle x,y \rangle = x + (x+y) \cdot (x+y+1)/2$

Cartesian Product Representation KAIST

CS700 M. Ziegler

of polynomials

Def a) For representations ξ of X and υ of Y, write $\xi \times \upsilon$ for the representation of $X\times Y$ with $(\xi\times \upsilon)(\langle \underline{u},\underline{v}\rangle):=(\xi(\underline{u}),\,\upsilon(v)).$

b) For representations ξ_i of X_j , $j \in J \subseteq \mathbb{N}$, write $\prod_i \xi_i$ for the representation of $\prod_{i \in J} X_i$ with $\prod_i \xi_i (\langle \underline{u}_0, \underline{u}_1, \underline{u}_2, \dots \rangle) := (\xi_i(\underline{u}_i))_i$

Examples:

Recall $\delta:\rightarrow \mathbb{R}$

 $\delta^{\mathbb{N}}: \longrightarrow \mathbb{R}^{\mathbb{N}}$ sequences of reals

 $\delta^*:\to \mathbb{R}^*$ vectors of reals

 $\delta^*:\to \mathbb{R}[X]$ real polynomials

 $\delta^{*\mathbb{N}}: \to (\mathbb{R}[X])^{\mathbb{N}}$ sequences

 \mathcal{B}/C -binary pairing

 \mathcal{B}/C -countable pairing $\langle \underline{u}_0,\underline{u}_1,\underline{u}_2,\dots \rangle_{\langle j,n\rangle} := u_{j,n}$

Lemma: If $\xi: \to X$ and $v: \to Y$ and $\xi_i: \to X_i$ are admissible, then so are $\xi \times v : \to X \times Y$ and $\prod_{i \in I} \xi_i \to \prod_{i \in I} X_i$.

Representing Functions & Sets

Recall: To compute $\Xi:\subseteq C(K) \to C(K')$ means:

Convert any $(P_m) \subseteq \mathbb{D}[X]$ with $||f - P_m||_{\infty} \le 2^{-m}$

to some $(Q_n) \subseteq \mathbb{D}[X]$ with $||g - Q_n||_{\infty} \le 2^{-n}$, $g = \Xi(f)$.

$$\delta^{\mathbb{N}}: \longrightarrow \mathbb{R}^{\mathbb{N}}$$
 sequences of reals

$$\delta^*:\to \mathbb{R}^*$$
 vectors of reals

$$\delta^*:\to \mathbb{R}[X]$$
 real polynomials

$$\delta^{*\mathbb{N}}: \longrightarrow (\mathbb{R}[X])^{\mathbb{N}}$$
 sequences

of polynomials

$$\delta_{\Box}$$
: $\rightarrow C(K)$ continuous functions

 $\kappa: \to \mathcal{K}(X)$

compact subsets

$$d_A: X \ni \underline{x} \longrightarrow \inf\{ d(\underline{x},\underline{a}) : \underline{a} \in A \}$$

Representation of X is a surjective partial mapping $\xi: \to X$.

N-Pairing bijection "Hilbert Hotel" $\langle x,y\rangle = x + (x+y)\cdot(x+y+1)/2$

Representing Functions & Sets II KAIS

Recall: To compute $f:K \subseteq \mathbb{R} \to \mathbb{R}$ also means:

Compute real 'sequence' f(q), $q \in \mathbb{D} \cap K$ and compute a modulus $\mu: \mathbb{N} \to \mathbb{N}$ of continuity of f.

$$\begin{aligned} 2_{A}(\underline{x},n) &= + & \text{if } d_{A}(\underline{x}) \leq 2^{-n}, \\ 2_{A}(\underline{x},n) &= - & \text{if } d_{A}(\underline{x}) \geq 2^{-n-1} & \delta^{\mathbb{N}} : \to \mathbb{R}^{\mathbb{N}} \text{ sequences of reals} \\ \kappa' &: \to \mathcal{K}(X) & \underline{x} \in \mathbb{D} & \delta^{*} : \to \mathbb{R}^{*} & \text{vectors of reals} \\ \kappa &: \to \mathcal{K}(X) & \delta^{*} : \to \mathbb{R}[X] \text{ real polynomials} \\ & \text{compact subsets} & \delta_{\blacksquare} : \to C(K) \text{ continuous functions} \\ d_{A} : X \ni \underline{x} \to \inf \{ d(\underline{x},\underline{a}) : \underline{a} \in A \} & \delta_{\square} : \to C(K) \text{ continuous functions} \end{aligned}$$

Reduction $\xi' \leq \xi$ means cont. $F: \text{dom}(\xi') \rightarrow \text{dom}(\xi)$ st. $\xi' = \xi \circ F$ Theorem: $\delta_{\square} \equiv \delta_{\square}$ are admissible, $\kappa \equiv \kappa'$ are admissible.

§3 Computability on Topological Spaces

a) Basic Spaces

- Cantor/Baire Space, Computation
- Cost, Continuity, Compactness

b) Representations

- Definition, Real Examples revisited
- Realizers of Multi/functions between represented spaces
- (Continuous) Reduction between Representations
- Standard/Admissible representations; Main Theorem
- Sequences, Continuous Functions, Compact Subsets