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§3 Computability on Topological Spaces

a) Basic Spaces
= Cantor/Baire Space, Computation

= Cost, Continuity, Compactness

b) Representations
= Definition, Real Examples revisited
=Realizers, Multi/Functions between Represented Spaces
= (Continuous) Reduction between Representations
= Standard/Admissible representations; Main Theorem

=Sequences, Continuous Functions, Compact Subsets



a) Basic Spaces c:fﬁ:i

Classical/discrete/countable data processing: {0,1}", Z°
Input/process/output of (finite sequences of) bitsor integers.

Other data (e.g. graphs) encode over finite no. bits/integers.

Universe of continuum cardinality, such as R,((K),K(X) :
Encode over infinite sequences of bits/integers.

]
. Re/en-code one over the other 5 0 1 5
Cantor space C = {0,1}" 0/ TN 0\l
- O ® O O
Baire space B =27" o/ 1 o/ \1 o/\1 o/\1

MR - OO0 00000 O0
equipped with ultrametric 000000000 0000000

D(Q,\_/) — 2min{n:un#vn}
D(u,v) < max{D(u.w) DWW} | fin binary)
Def: Output utJC or ull’B: Print the sequence ugUy,U,,...

Output in time ttN—N: u_appears after <t(n) steps.
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Def: Output utJC or uldB: Print the sequence Uy,Uq,Us,...
Output in time tN—N: u_appears after <t(n) steps.
Def: Compute F:.CLB-B: On input ulldom(), output F(u).
Behave arbitrarily on other inpuﬁ @gardless of uddomEF)
Compute in time tN—-N: F(u), appears after <t(n) steps.

Example: F(u)=111.. if #initial Osin uis odd
F(u) =000. . if #initial Osin uis even

t 2(u,n) := #steps algor. /A makes on input U until n-th output.
Main Lemma: a) Every computable F:[1B—B is continuous.
b) F computable in time t = tis a modulus of continuity of F.

c) partial U—t 4(u,n) is locally constant/continuous.
d) dom() compact, A computes F = has time bound t=t(n)




Compactness in Basic Spaces C!fﬁ:f’-::

Reminder a) Cantor space C ={0,1}" is compact.
b) A subset X of a compact set is compact iff Xis closed.

c) Baire space B =27" is not compact.

Konig's Lemma: XO7Z" is compact | [11<'3\g

i - 3

iff it is closed and the set e i O
*:={ alz* | [bOZ" :ab X} Q. Q. 9 9O

of finite initial segments O OO OO OO0 O

is finitely branching. OOOOOO0OOOOOO0O0O

Main Lemma: a) Every computable F:[1‘B—~B is continuous.

b) F computable in time t = tis a modulus of continuity of F.

c) partial U—t 4(u,n) is locally constant/continuous.
d) dom({) compact, A computes F = has time bound t=t(n)



b) Representations
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binary: r=2_¢2" ¢=(c) U C i
rational: |r—a,,/a,,.,| < 1/n )

dyadic: |r—a,/2" < 2" (bina,) )OC &

[1C—[0;1]

(—
(C—

0;1

0;1

Recall equivalence: r has (a) decidable binary expansion
b) computable sequence (a,)Z with r—a,/a,,.,| < 1/n
c) computable sequence (a,)0Z with |r—a /2" < 2™

Def. A representation of a set X Is A &-name of XX
a surjective partial mapping &.—X. IS any U with &(u)=x.



(Computing) Multi/Functions KAIST

between Represented Spaces CS700 M. Ziegler
binary: r=2_¢2" ¢=(c) U C 3:0C—[0;1]
rational: |r—a,, /8.4 < 1/n 0: 0 C—[0;1]

dyadic: [r=a,/2"| <27 (pin@a))0C &:0C—[0;1

Observe: For Ua c-name of XLUX and F a (&_,,1))-' X— Y
realizer of f:X=Y, F(u) is a v-name of yLIf(X). EI f TU

For F a (§,v)-realizer of :X=Y and G a (v,{)- F R
realizer of g:Y=2, G Is a (&,0)-realizer of gf.

i

Computing f:X=Y means to compute a (&,v)-realizer. restriction
A (&,v)-realizer of :X=Yis a F:domE)—dom() s.t. fo§ L veF.

Def. A representation of a set X Is A &-name of XX
a surjective partial mapping & —X. IS any U with &(u)=x.
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Reduction between Representations

binary: r=2_¢.2" ¢é=(c,) U0 C 3:0C—[0;1]
rational: |r—a,, /a4 < 1/n 0:JC—[0;1
dyadic: |r—a,/2" < 2" 0:JC—[0;1]
Examples: B=p, B=3, 5=Xp, p=<3, pXB. 3XB X——Y
Def: Continuous reduction &'<& ET . TU

means a (&',&)-realizer of id:X—M B,
transitive

Computing f:X=Y means to compute a (§,v)-realizer.

Reduction &¢'<¢ means cont. F:domE')—domg) st. £'L EoF
Def. A representation of a set X Is A &-name of XX

a surjective partial mapping &:—X IS any U with &(u)=x.
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Domains of Representations

binary: r=2_¢2" ¢=(c) U C 3:0C—[0;1]

rational: |r—a,, /8.4 < 1/n 0: 0 C—[0;1]

dyadic: |[r—a, /2" <2" 5:0C—[0;1

Examples: B<p, B<8, 5=p, p=5, pXB, 5XB. X—Y

Examples: dom(p) is not compact, ET TU

dom(B), dom(d) are compact. Kénig's B_F,
Lemma

Recall: dom(F) compact, /A computes F = has time bound t

Konig's Lemma: XZ" is compact iff it is closed and
the set X*:={ qlz* | [bOZN:abOX} of finite initial
segments is finitely branching.
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Admissible Representations

binary: r=2_¢2" ¢=(c) U C 3:0C—[0;1]
rational: |r—a,, /8.4 < 1/n 0: 0 C—[0;1]
dyadic: |r—a,/2" < 2" 0:0JC—[0;1]

Examples: B=<p, B=d, =<p, p=3, pfgs, 6§§B.
Examples: dom(B), dom(d) compact, dom(p) not compact

Examples: 3 is not admissible. p and o are admissible.

Def: Representation & of X is admissible if (i) is continuous
and (ii) every continuous representation ¢' of X has: &'<&.

Reduction &'<¢& means cont. F:domg')—dom(g) st. &L &oF
Main Theorem [KW'85]. Fix admissible &:—X and v:—Y.

f:X—>Y iIs continuous iff it has a continuous -realizer.
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Def: Fix a topological T, space X with subbasis O, nLIN,.

The standard representation ¢ of X (wrt. O,) is the following:
A &—name of x[IXis a list of all nLIN (in any order) with xUJO,.

Theorem: The standard representation is admissible.

Proof: (i) £20,n0,] = U, { u0B: u=nCu=m} open
(i1) ¢'<& for every continuous (not necessarily surj.) :—X
Let F(V)mjy := mif & (Vo,vy ... Vi) o ZN]1 00O, :=0else.

Def: Representation ¢ of X is admissible if (i) is continuous
and (ii) every continuous representation ¢' of X has: &'<&.

Reduction ¢'<& means cont. F.domg')—dom(g) st. &'L &E°F
Representation of X is a surjective partial mapping &.—X
N—Pairing bijection "Hilbert Hotel" {X,y) = X + (XtY)-(X+y+1)/2
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Def a) For representations ¢ of Xand v of Y, write &xu
for the representation of XxY with ({X0)(U,V)) := (E(u), v(V)).

b) For representations ¢ of X;, JLJON, write [];¢; for the
representation of [jX with 1€ (UpUsU.-.)) 1= (§(W)),

oN:—RN sequences of reals
Examples:

*__) *
Recall 8:—R 0 :—R vectors of reals

& :—R[X] real polynomials
& :—>(R[X]N sequences

of polynomials

*

B/ C-binary pairing

B/C-countable pairing (Ug,U;,Us,... Yin = U,

Lemma: If &—X and vi—Y and ¢:—X; are admissible,

then so are &¢xuv:i—XxY and [].3& — [ 3X-
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Representing Functions & Sets

Recall: To compute =:0((K) —-((K') means:
Convert any (P, )UD[X] with |[f-P,||, <2™
to some (Q)UD[X] with ||g-Q. ||, < 2", g==(f).

oN:—RN sequences of reals
d:—R"  vectors of reals

K:—K(X) & :—R[X] real polynomials *
compact subsets  §"N:—(R[X])N sequences LC
dy . XZX—iInf{ d(x,a) : alJA} of polynomials

0. ((K) continuous functions

Representation of X is a surjective partial mapping &.—X
N—Pairing bijection "Hilbert Hotel" (X,)y) = X + (X+Y)-(x+y+1)/2
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Recall: To compute f:KOR—R also means:

Compute real 'sequence' (), qLUUDNK and
compute a modulus n:N—N of continuity of f.

2\(X,n) =+ if dy(¥)=2™,

2,(x,n) =- ifdyx)>2"™1 ON:—RN sequences of reals
K" — K(X) XD d:—R"  vectors of reals
i:— K(X) O :—R[X] real polynomials

compactsubsets 5 -— ((K) continuous functions

d XX—Inf{ d(x,@) : allA }
0. ((K) continuous functions

Reduction &'<¢& means cont. F:domE')—domg) st. &' =&F
Theorem: o.= 0, are admissible, k =k are admissible.
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§3 Computability on Topological Spaces

a) Basic Spaces
= Cantor/Baire Space, Computation

= Cost, Continuity, Compactness

b) Representations
= Definition, Real Examples revisited
=Realizers of Multi/functions between represented spaces
= (Continuous) Reduction between Representations
= Standard/Admissible representations; Main Theorem

=Sequences, Continuous Functions, Compact Subsets



