.Introduction to Algorithms"

Syllabus

5. Graph Problems

— Recap on Graphs: un/directed, weighted

— Shortest Paths: single-source, all-pairs

— Minimum Spanning Tree: Prim, Kruskal

— Maximum Flow: Ford-Fulkerson, Edmonds-Karp
— Maximum (weighted) Bipartite Matching

— Minimum Cut



5. Graph Problems graph recap
Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Basic graph concepts: EcVxV directed edges
» simple: no multi-edges | _
nor loops £ symmetric: undirected edges
* in-/out-/degree %0/0: absent

° (un-/directed) path w:E—N edge weights 1: present
e (strongly) connected component

« subgraph, induced graph I:I

Handshaking lemma:
#HE =3 _, indeg(v) =2 _, outdeg(v)

Adjacency/weight matrix f
Ag e NP Powers of 4. T



5. Graph Problems graph examples

Specification: Graph G=(V,E), n=#V vertices, m=#E edges
ZE M P(0,0) P(0,1) P(0,2) P(0,3)
&
P(1,0) |P(1, 1) [P(1,2) |P(1,3)
Kys ® & ® L]

P20 P2, D |P2,2) |P2,3)

P|_l_m P3. 1) | P33 2) |P3,3)
diameter? planar? A~ f @ @

K

L]
L]
&




5. Graph Problems Connectedness
Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: 4, 5.tV Adjacency/weight matrix 4. € NV

Output: Is there a (directed) path from s to ¢ in G? A4,,=

no edge
DFS(v) //1Is treachable in G from v? f\/c) 4,,=0
If v=t Return (true); o (D) () G

A \"J
If v 1s marked visited
Return (false); © %)

Mark v as visited;
Reachable(G,s,?)

For each neighbor u of v do

if DFS(1) Return (true): For each vertex ve V
Mark v as unvisited,
Return (false);

Return DFS(s)



5. Graph Problems Shortest path(s)

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: 4; s.teV Adjacency/weight matrix 4. € NV*V
Output: weight d(s,?) of lightest path from s to .
Input: 4; seV/ Adjacency/weight matrix 4. € NV*V

Output: For every teV, weight d(s,?) of lightest path from s to .

Input: 4 Adjacency/weight matrix 4. € NV

Output: For every s,zeV, weight d(s,?) of lightest path from s to .

Remark: Shortest paths (on non-negative edge weights) are simple paths:
@® W.l.o.g. consider only positive edge weights: otherwise merge vertices.
@® In a shortest path (s,v,,v,,...v,...v,...) from s to ¢,

all segments (v,,...v,) are shortest paths.




5. Graph Problems Shortest path(s)
Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: 4, seV Adjacency/weight matrix 4. € NV

Output: For every teV, weight d(s,?) of lightest path from s to .

‘s g : . set of
Dijkstra’s A.lgOl‘lthII.l.. unvisited
Mark all Vewe vertices
Initialize Q:=V.| tentativ distance from s |
For each vertex v let d:=°; d :=0.

While 0 # @ do |

Extract from Q a vertex u with Ieast d .]Mark u as visited.

For each unvisited neighbor u of v do

O(n-extractMin+
If d"=d+A, <d, then [decrease d :=d'| URSEERLINID




5. Graph Problems Shortest path(s)
Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: 4, Adjacency/weight matrix A, € NV

Output: For every teV, weight d(s,?) of lightest path from s to .

Loop invariant d, = d(s,v). Suppose M :={v: d >d(s,v) } # D.
Then o :=min{ d(s,v) : veM } and veM with d(s,v)=0 exist.
For (s,...,u,v) alightestpath to v, itholds, o >d(s,u)=d |
Thus d(s,v)= d(s,u)+A4,, and u gets extracted from Q before v. <

For correctness, recall main loop: While QO + & do
Extract from Q a vertex u with(least] d,. Mark u as visited.
For each unvisited neighbor u of v do [in increasing }

If d"=d+A, 6 <d then decrease d :=d'. order w.r.t. d




5. Graph Problems Al shortest paths
Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: 4, Adjacency/weight matrix 4. € NV
Output: For all s,7eV, weight d(s,?) of lightest path from s to .
: A =
Floyd-Warshall Algorithm: n?)’vedge
For all pairs (u,v) of vertices, initialize d,,:=4,, 4,,=0
For each vertex uelV Dijkstra
For each vertex veV (fixed seV):

For each vertex welV/

O(n-extractMin+
Itd, >d —+d, then m-decreaseKey)

dV,W = dv,u T du,w Repeat for

each selV




5. Graph Problems WMin. Spanning Tree
Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: 4;  Symmetric adjacency/weight matrix 4, € NV

Output: 7cFE spanning tree of least weight

> Auv = CO
s.t. (V,T) connected | no edge

4,,=0




5. Graph Problems Prim’s Algorithm
Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: 4;  Symmetric adjacency/weight matrix 4, € NV

Output: 7cFE spanning tree of least weight

1. Initialize a tree with a single vertex,
chosen arbitrarily from the graph.

2. Grow the tree by one edge:

Of the edges that connect the tree
to vertices not yet in the tree,
find the minimum-weight edge,
and transfer it to the tree.

3. Repeat step 2
(until all vertices are in the tree).




5. Graph Problems Prim’s Algorithm

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: 4;  Symmetric adjacency/weight matrix 4, € NV

Output: 7cE spanning tree of least weight O(n-extractMin+
m-decreaseKey)

Initialize F:=4, Q:=V. Also:
d = and e :=0 for all ve V.

While OO do

Extract from Q
a vertex u with least d.

If e, #0, add edge (u,e,) to F.
For each neighbor ve Q of u do

If A, <d, then
(decrease d:=4,); e =u;

v




5. Graph Problems  Kruskal Algorithm
Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: 4;  Symmetric adjacency/weight matrix 4, € NV

Output: 7cFE spanning tree of least weight O(1) afte
C U U
Initialize the forest (=set of trees)
with edges F:={}, i.e., such that 6
each vertex vel is a separate tree. | :
While E+{} and F'is not yet spanning. . 9
Extract from £ edge e of least weight. 3 12 5
If e connects two different trees of F'}~ 8
7 4

then add e to F, thus
combining two trees into a single ong.




5. Graph Problems Max Flow

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: s,reV, A4, adjacency/weight matrix A4, € XV
Output: f*/>—R max. flow from s to ¢ Goal: [maximize|

] 3/3 (o Zv:(s,v)eEf(S V)
3/3 ) Q = Zosuper 1)
fflow (from s to )
0/2 1/4

Lemma: There exists
2/3 /!\/ an integral maximal flow.

Def: A flow from s to ¢ in G with weights A=0 is a function
SV2R) such that Vve N\ {s,t}: 2., ep V) = 20000 VW)
and flu,v)=—f(v,u). Itis admissible if it holds f(u,v) = 4,




5. Graph Problems Ford-Fulkerson

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: s,teV, A, adjacency/weight matrix A4 € XV
Output: f:1?>—[R max. flow from s to ¢ Goal: maximize

The residual G, ofagraph G with flow /| /= Zunerf(s:V)

has edges E,:=1{ (u,v):4,,>Auy) v flv,u)>0}

Ford-Fulkerson: Initialize /=0. EQUEGUEEEEE UGN

While there exists [some path P = (s=u,,...u,=t) fromstotin G,

Let a :=min{ 4, , —Au,uy,):~1..K-1}and f:=froP.




5. Graph Problems Edmonds-Karp

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: s,teV, A, adjacency/weight matrix A4 € XV
Output: f:1?>—[R max. flow from s to ¢ Goal: maximize

The residual G, ofagraph G with flow f A= Zv:(s,v)eEf(S"’)
has edges E,:={ (u,v):4, >f(uv) v flvu)>0}

0/1000 0/100( 1/10 DD 0/100( 1/1000 gy _'I_J’lDD[

11 (

0/1000 DleD[ 0/1000 000 00

Edmonds- Karp. Initialize f=0. shortest |

While there exists some path P = (s=u,...u,=t) fromstozin G,
Let a:==min{ 4, , —fu,u,,):k~1...K-1} and f:=fro-P.

Runtlme n-m?)




5. Graph Problems max. Bipartite

Matching
Specification: Bipartite graph G=(U,V,E)

Input: 4, adjacency/weight matrix A4, € N@

Output: FcFE max.
(weighted) matching

Reduction to
max. weighted flow

Edmonds-Karp: Initialize /Z0. /¢nortest]
While there exists some path P = (s=u,,...u;=t) fromstozin G,
Let a:=min{ 4, , —Aupu,):k~1...K-1} and f:=fto-P.




5. Graph Problems Min Cut
Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: s,reV, Ag adjacency/weight matrix A, € NV
Output: CcE min.cut between s,¢

Def: Acutfrom s to 7 in G
Is a subset CcV s.t. seC, teC.

It has capacity A(C) = Z(u,v)e g A,
ueCveC

Theorem: min A(C) = max |f|
C cut (s,7) f flow (s,9)

Proof ">": Forevery C,f: A(C) = Jfl.
"<": Consider CcV all vertices reachable
from s in G, for max. f from Ford-Fulkerson. :




.Introduction to Algorithms"

Summary

5. Graph Problems

— Recap on Graphs: un/directed, weighted

— Shortest Paths: single-source, all-pairs

— Minimum Spanning Tree: Prim, Kruskal

— Maximum Flow: Ford-Fulkerson, Edmonds-Karp
— Maximum (weighted) Bipartite Matching

— Minimum Cut

— Planarity Testing, Maximum Matching — CS500



