Syllabus

5. Graph Problems

- Recap on Graphs: un/directed, weighted
- Shortest Paths: single-source, all-pairs
- Minimum Spanning Tree: Prim, Kruskal
- Maximum Flow: Ford-Fulkerson, Edmonds-Karp
- Maximum (weighted) Bipartite Matching
- Minimum Cut

graph recap

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Basic graph concepts:

 $E \subseteq V \times V$ directed edges

• simple: no multi-edges

nor loops

E symmetric: undirected edges

• in-/out-/degree

• (un-/directed) path

 $w:E \rightarrow \mathbb{N}$ edge weights

∞/0: absent 1: present

• (strongly) connected component

• subgraph, induced graph

Handshaking lemma:

$$\#E = \sum_{v \in V} \text{ indeg}(v) = \sum_{v \in V} \text{ outdeg}(v)$$

Adjacency/weight matrix

$$A_G \in \mathbb{N}^{V \times V}$$

Powers of A_G

5. Graph Problems

graph examples

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

5. Graph Problems

Connectedness

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

S

Input: A_G ; $s, t \in V$

Adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: Is there a (directed) path from s to t in G?

 $A_{u,v} = \infty$

no edge

DFS(v) // Is t reachable in G from v?

If v=t Return (**true**);

If v is marked visited
Return (false);

Mark v as visited;

For each neighbor u of v do if DFS(u) Return (**true**);

Return (false);

Reachable (G,s,t)

For each vertex $v \in V$ Mark v as un visited; Return DFS(s)

5. Graph Problems

Shortest path(s)

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: A_G $s, t \in V$

Adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output:

weight d(s,t) of lightest path from s to t.

Input: $A_G \ s \in V$

Adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: For every $t \in V$, weight d(s,t) of lightest path from s to t.

Input: A_G

Adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: For every $s, t \in V$, weight d(s,t) of lightest path from s to t.

Remark: Shortest paths (on non-negative edge weights) are simple paths:

- W.I.o.g. consider only <u>positive</u> edge weights: otherwise merge vertices.
- In a shortest path $(s,v_1,v_2,...v_k,...v_l,...t)$ from s to t, all segments $(v_k,...v_l)$ are shortest paths.

Shortest path(s)

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: A_G ; $s \in V$ Adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: For every $t \in V$, weight d(s,t) of lightest path from s to t.

Dijkstra's Algorithm:

set of unvisited vertices

Mark all vertices unvisited.

Initialize Q:=V. tentativ distance from s

For each vertex v let $d_v := \infty$; $d_s := 0$.

While $Q \neq \emptyset$ do

Correctness???

Extract from Q a vertex u with least d_u . Mark u as visited.

For each un visited neighbor u of v do

If
$$d':=d_u+A_{uv} < d_v$$
 then decrease $d_v:=d'$.

O(n·extractMin+ m·decreaseKey)

Shortest path(s)

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: A_G Adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: For every $t \in V$, weight d(s,t) of *lightest* path from s to t.

Loop invariant $d_v \ge d(s,v)$. Suppose $M := \{ v : d_v > d(s,v) \} \neq \emptyset$. Then $\delta := \min \{ d(s,v) : v \in M \}$ and $v \in M$ with $d(s,v) = \delta$ exist. For (s,\ldots,u,v) a lightest path to v, it holds $\delta > d(s,u) = d_u$. Thus $d(s,v) = d(s,u) + A_{uv}$ and u gets extracted from Q before v. \leq

For correctness, recall main loop: While $Q \neq \emptyset$ do

Extract from Q a vertex u with least d_u . Mark u as visited.

For each unvisited neighbor u of v do

If $d':=d_u+A_{uv} < d_v$ then decrease $d_v:=d'$.

5. Graph Problems All shortest paths

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: A_G Adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: For all $s, t \in V$, weight d(s,t) of lightest path from s to t.

Floyd-Warshall Algorithm:

runtime $O(n^3)$

 $A_{u,v} = \infty$ no edge

 $A_{u,u} = 0$

For each vertex $u \in V$

For each vertex $v \in V$

For each vertex $w \in V$

If
$$d_{v,w} > d_{v,u} + d_{u,w}$$
 then

For all pairs (u,v) of vertices, initialize $d_{u,v} := A_{u,v}$

$$d_{v,w} := d_{v,u} + d_{u,w}$$

Correctness

Dijkstra

(fixed $s \in V$):

O(n·extractMin+ m·decreaseKey)

Repeat for each $s \in V$

5. Graph Problems *Min.* Spanning Tree

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: A_G Symmetric adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: T spanning tree of least weight

s.t. (V,T) connected

$$A_{u,v} = \infty$$
no edge
 $A_{u,u} = 0$

5. Graph Problems

Prim's Algorithm

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: A_G Symmetric adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: $T \subseteq E$ spanning tree of least weight

- 1. Initialize a tree with a single vertex, chosen arbitrarily from the graph.
- Grow the tree by one edge:
 Of the edges that connect the tree
 to vertices not yet in the tree,
 find the minimum-weight edge,
 and transfer it to the tree.
- 3. Repeat step 2(until all vertices are in the tree).

5. Graph Problems

Prim's Algorithm

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: A_G Symmetric adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: T spanning tree of least weight

Initialize $F:=\emptyset$, Q:=V. Also: $d_v:=\infty$ and $e_v:=0$ for all $v \in V$.

While $Q \neq \emptyset$ do

Extract from Qa vertex u with least d_u .

If $e_u \neq 0$, add edge (u, e_u) to F.

For each neighbor $v \in Q$ of u do

If
$$A_{uv} < d_v$$
 then decrease $d_v := A_{uv}$; $e_v := u$;

5. Graph Problems Kruskal Algorithm

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: A_G Symmetric adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: $T \subseteq E$ spanning tree of least weight

Initialize the forest (=set of trees) with edges $F:=\{\}$, i.e., such that each vertex $v \in V$ is a separate tree.

While $E \neq \{\}$ and F is not yet spanning:

Extract from E edge e of least weight.

If e connects two different trees of F

then add e to F, thus

combining two trees into a single one.

5. Graph Problems

Max Flow

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: $s,t \in V$, A_G

adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: $f: V^2 \rightarrow \mathbb{R}$ max. flow from s to t

Goal: maximize

$$\sum_{v:(s,v)\in E} f(s,v)$$

$$= \sum_{u:(u,t)\in E} f(u,t)$$

f flow (from s to t)

Lemma: There exists an *integral* maximal flow.

Def: A flow from s to t in G with weights $A \ge 0$ is a function $f: V^2 \to \mathbb{R}$ such that $\forall v \in V \setminus \{s,t\}: \sum_{u:(u,v)\in E} f(u,v) = \sum_{w:(v,w)\in E} f(v,w)$ and f(u,v)=-f(v,u). It is admissible if it holds $f(u,v) \le A_{u,v}$

Ford-Fulkerson

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: $s,t \in V$, A_G

adjacency/weight matrix $A_G \in \mathbb{N}^{V imes V}$

Output: $f: V^2 \rightarrow \mathbb{R}$ max. flow from s to t

Goal: maximize

The <u>residual</u> G_f of a graph G with flow f $f = \sum_{v:(s,v) \in E} f(s,v)$

has edges $E_f := \{ (u,v) : A_{u,v} > f(u,v) \lor f(v,u) > 0 \}$

Correctness? Runtime $O(m \cdot |f|)$ Ford-Fulkerson: Initialize f=0.

While there exists some path $P = (s=u_1, ..., u_K=t)$ from s to t in G_r

Let $\alpha := \min\{A_{u_k,u_{k+1}} - f(u_k,u_{k+1}) : k=1...K-1\}$ and $f := f+\alpha \cdot P$.

Edmonds-Karp

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: $s,t \in V$, A_G

adjacency/weight matrix $A_G \in \mathbb{N}^{V imes V}$

Output: $f: V^2 \rightarrow \mathbb{R}$ max. flow from s to t

The <u>residual</u> G_f of a graph G with flow f $f = \sum_{v:(s,v) \in E} f(s,v)$

Goal: maximize

has edges $E_f := \{ (u,v) : A_{u,v} > f(u,v) \lor f(v,u) > 0 \}$

Edmonds-Karp: Initialize *f*≡0. shortest

While there exists some path $P = (s=u_1,...u_K=t)$ from s to t in G_t

Let
$$\alpha := \min\{A_{u_k,u_{k+1}} - f(u_k,u_{k+1}) : k=1...K-1\}$$
 and $f := f+\alpha \cdot P$.

max. Bipartite Matching

Specification: Bipartite graph G=(U,V,E)

Input: A_G

adjacency/weight matrix $A_G \in \mathbb{N}^{U \times V}$

Output: $F \subseteq E$ max.

(weighted) matching

Reduction to max. weighted flow

Edmonds-Karp: Initialize f=0. shortest

Runtime $O(n \cdot m^2)$

While there exists some path $P = (s=u_1,...u_K=t)$ from s to t in G_t Let $\alpha := \min\{A_{u_k,u_{k+1}} - f(u_k,u_{k+1}) : k=1...K-1\}$ and $f := f + \alpha \cdot P$.

Min Cut

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: $s,t \in V$, A_G adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: $C \subseteq E$ min.cut between s,t

Def: A cut from s to t in G is a subset $C \subseteq V$ s.t. $s \in C$, $t \notin C$.

It has capacity $\lambda(C) = \sum_{\substack{(u,v) \in E \\ u \in C, v \notin C}} A_{u,v}$

Proof " \geq ": For every C,f: $\lambda(C) \geq |f|$.

" \leq ": Consider $C \subseteq V$ all vertices reachable from s in G_f for max. f from Ford-Fulkerson.

Summary

5. Graph Problems

- Recap on Graphs: un/directed, weighted
- Shortest Paths: single-source, all-pairs
- Minimum Spanning Tree: Prim, Kruskal
- Maximum Flow: Ford-Fulkerson, Edmonds-Karp
- Maximum (weighted) Bipartite Matching
- Minimum Cut
- Planarity Testing, Maximum Matching → CS500