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Pedagogical Concept
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.Introduction to Algorithms"

Syllabus of 81 Introduction

1. Computational Problems/Algorithmic Solutions

— “Virtues” of Computer Science:

» Specification
 Algorithm Design
« and Analysis

« Optimality, Example: Square and Multiply
— Semanticsé&cost for various primitive operations:

« Four algorithms computing Fibonacci Numbers
— Mathematics: Recurrences and the Master Theorem
— Polynomial Multiplication: Long, Karatsuba, Toom, Cook

— Matrix Multiplication: complexity as open problem



1. Compu_tatlo_nal prol_alems Sisgler.
and algorithmic solutions  Abstraction

high-level
program.

obj.library

Computer

Hardware




1. Computational problems «yityes” of

and algorithmic solutions Computer

~__Sclence

e problem specification

e algorithm design
(primitives, semantics, cost)

e and analysis
(correctness, efficiency)

o optimality proof




1. Computational problems and

algOrithmiC solutions Specifica’[ion
1 Find me a good friend/spouse!

d What movie shall we watch later?

d How many angels can dance on the head of a pin?

d How many prime numbers twins are there?

d Is ,no" the only correct answer to this question?

d What is the smallest positive integer

that cannot be described in English using 100 characters?



1. Computational problems and

algorithmic solutions

[l sort list...list_end

nov esi, offset list
top: nov edi, esi
Inner : nov eax, [edi]

nov edx, [edi +4]

cnp eax, edx
jl e no _swap

nov [ edi +4],
nov [edi], e

eax
dx

no swap:. add edi, 4
cnp edi, list end
] b Inner
add esi, 4
cnp esi, list end

] b top

algorithm
VS. code

 primitive operations
e their semantics

e their costs

Java:
Arrays. sort (nunbers);



1. Computational problems and

algorithmic solutions nseudo-code
bubbleSor( A[n] )
while n+0 do « primitive operations
newn :=0 _ _
fori =1 ton-1 do  their semantics
if Ali-1] > A[i] then * their costs
swap@[i-1], Al])
newn :=i
endif
endfor
N := newn
endwhile

,Premature optimization is the root of all evil* (D.Knuth)



1. Computational problems and

algorithmic solutions Bit-cost vs.
Instruct.count

Problem: Multiply two n-bit integers - primitive operations

X bnlbn2 b b e their semantics

/ e their costs

Theorem (Harvey, v.d. Hoeven'20): < N @dditions]  O(n)
O(n-log n) bit operations suffice! of 2n each: O(n?




1. Computational problems and

algOr|thm|C SOIUUO”S asymptotic
efficiency
n log,n -10s | n-log n sec Nz msec n3 usec 2" nsec
10 33sec 33sec 0.1sec lmsec lmsec
100 =1lmin 11min 10sec 1sec 40 Mrd. Y
1000 =1.5min =3h 17min 17min
10 000 =2min 1.5 days =1 day 11 days
100 000 =2.5min 19 days 4 months 32 years

Algorithm analysis, as opposed to empirical program evaluation

,Premature optimization is the root of all evil* (D.Knuth)




1. Computational problems and

algorithmic solutions asymptotic
Landau Big-Oh notation f= O(g) growth
e constant 17
e logarithmic log(n) 409 [-
« square root N ?3;2 [
e linear n 512 |-
.- 256 |-
* quasilinear n-log(n) . L
 quadratic n2 64 |-
° CUb'C n3 ?z i n log n
e polynomial c-ne 8 -
] 4 log n
* superpolynomial nlog(n) 5 |
e exponential 2" 1

)
W
I
W
o)
<
o0

« doubly exponential 22
« tetration 22..%



1. Computational problems and

algorithmic solutions  pinary length
VS. unhary/value
Compare writing N=299°
a) In binary:
length 1000= log,(N) logarithmic in value

b) in unary: length 2°99 = value

Deciding whether N is prime: Factoring N:
Sieve of Eratosthenes not known feasible
takes O(VN) operations. in time O(polylog N)

[AKS'02]: time O(log® N) Basis of RSA crypto



1. Computational problems and

algorithmic solutions Optimality
Example Powering Problem: Fix some monoid M.

Input: XOM and nLN, Output: X",
Cost: #multiplications

o X"=X-X-...-X : N-1 multiplications

e Recursive algorithm: compute
XN = (X 2)? if n even T(n) < T(Ln/2))+1
Xn = (XMD22 . X if n odd T(n) < T(Ln/2))+2

e #multiplications T(1) =0, T(n) < T(Ln/2))+2,
e Proof by induction: T(n) < 2-log,(n)



1. Computational problems and
algorithmic solutions Optimality
Example Powering Problem: Fix some monoid M.
Fix nLN. Input: XOM. Output: X"
Cost: #multiplications

Devised & analysed algorithm |
using =2lbg,n multiplications [ 3 operations!

" )
XN = @rIniX)

Lemma a) Any algorithm starting with input X,

and using only multiplications,
produces only monomials in X as (intermediate) results.

b) After £ multiplications, all intermediate results
(monomials) have degree n<2‘,

So computing X" requires £=log,n multiplications.




1. Computational problems and

algorithmic solutions Example;
Fiblter(n) Fo,=0 Fibonaccl
if n=0 return O; ~ Numbers
A Bl A F=1
fib :=1; fibL :=0;
| _ > 2n/2 —1,
while n>; do F.=F.+F. 1>1
tmp:=fibL;
fibL := fib; FibRek(n)
fib := fibL+tmp; if n=0 return O; if n=1 return 1:
n:=n-1: end return FibRek(n-1)+FibRek(n-2);
return fib; .
2F  additions

<O(n) additions+assignments

Observe: Computing F, produces 2n/2 bits of output.



1. Computational problems and
algorithmic solutions Example:

Fiblter(n)
If Nn=0 return O;
fib :=1: fibL :=0;
while n>1 do
tmp:=fibL;
fibL := fib;
fib := fibL®tmp;
n:=n-1; end
return fib;

1 1
1 O

|:n-l

| |:n—2 -

F=0 Flbonacci with

F =1 Multiplication

|:n = |:n-l T |:n-2

FibRek(n)
If Nn=0 return O; If n=1 return 1;

return FibRek(n-1J®FibRek(n-2);

1 1
1 0




1. Computational problems and
algorithmic solutions Example:
o := (1+/5)/2 Golden Ratio F,=0 Fibonacci with

Exponentiation
o= (o)) /N5 | Rzt P

(Binet, proof by induction) |:n — |:n_1 + Fn_2

Four different algorithms, accelerating

¢"=exp(-in o)

from exponential to constant “time”!

Repeated squaring: O(log k) multiplications of 2x2 matrices,
each expressed using 8 integer multiplications and 4 additions

K
1 1

1 0

1 1
1 O

|:n
|:n-l

_ |:n-k o
F k:=n-1




1. Computational problems and

algorithmic solutions
recurrences

Master Theorem: Let fN—R be increasing

and satisfy the recurrence relation

fln) = a- f{in/b) + O(n9)
whenever n is an integral power of b,

where a,b=1 are integers and d>o0. Then

O(n?) if a < b?,
f(n)is{ O(n%logn) if a=2b",
O(nlogb )y if a > b9,



1. Computational problems and

algorithmic solutions

Input: coefficients of polynomials

Long
Multiplication

A(X)=a tax+a+...+a N1 and B(X) of degree <N.

Output: coefficients of polynomial

C(X) .= A(X) - B(X) of degree =K:=2N-2.

w.l.o.g. 2|N

e.g. X(-5) or +

T(N):= #arithmetic operations (multiplications, linear'combinat.s)

Recursive algorithm,  Distributive law: T(N) =4- T(N/2) + O(N)

"Naive* Ck: Zj a] y h(-j

(A Ag(x)-xV2) - (Bo(X)+ By(X)-xV2) = Cy(x) +
Cl= [ Gums 16 o T G o

\
A




1. Computational problems and

algorithmic solutions

Input: coefficients of polynomials

A(X)=a tax+a+...+a N1 and B(X) of degree <N.

Output: coefficients of polynomial

C(x) := A(X) - B(X) of degree <K:=2N-2. [ 4 x(-5)or +]

Karatsuba
Multiplication

w.l.o.g. 2|N

T(N):= #arithmetic operations (multiplications, linear'combinat.s)

Recursive algorithm,  Distributive law: T(N) =4- T(N/2) + O(N)
based on: - karatsuba law*:  T(N) = 3- T(N/2) + O(N)

(Ag()+ A () XN2) - (By(x)+ By(X)-xN2) = Cy(X) + Cy(x) - X2 + Cy(x) - XN
Co(X) = Aq(X) - By(X)

Co(¥) = AoX) - By(¥) .

Ci(¥) = (A +A(x) ) - (Bo(X) +By(X)) — Co(¥) — Cx(X)




1. Computational problems and

algorithmic solutions - Toom
T, = (A+2A +4A)0 (B,+2B,+4B,) Multiplication
T, = (Ag+ A +A)O B+ B+ By)
T 1= (4Ag+2A,1A,)0 (4B,+2B,+B,)

w.l.o.g. 3|N
C,=  —Cy+ YT, 2T, + %T, — 3L,
C,= 3YC, YT, +5T, —¥T, + 3YC,
C,= —3YC,+ %T, 2T, +%T, —C,
Co= Ag0By, Distributive law: T(N) =4- T(N/2) + O(N)
Ci= A0B, Karatsuba law*: T(N) =3- T(N/2) + O(N)
.ftoom's law*:  T(N) =5- T(N/3) + O(N)

(AL AL XN + Ay 2NS) x (B0 +B,(0)-XV3 +B,(3) )
= Cy) + o0 X3 + C28N3 + Co(x) 33+ €0 x43



1. Computational problems and
algorithmic solutions

Input: coeff. of A(X)=ay+a,x+a,x?+... of deg<N, B(X) of degcM
Output: coeffients ¢, ...c, of C(X) :=A(X) - B(x), degC)=K

Long Multiplication:

(1%, ... XE -
||1x1x2%...x1
(1 %32 ... X§)

Evaluation/Interpolation: K+1 products, O(

| A(Q-B(x)

ACQ-B(x)

AQY-BOY

Toom-Cook

Now K —=k:=n+ml

N-M products & linear combinations

4 N
Co
!

\ CK/

Vandermonde Matrix
iInvertible for any

distinct fixed X, ...X«

NK+MK+K?2) lin.combs

T(N,M) = (n+m-1) - T(N/n,M/m) + O((N+M)-(n+m)3)

(Ag() + Ag()XN + Ay(x) 32NN + .+ A4 (3)- XN )
x (Bo(x) + By(0X MM+ By(x) XM+ .. +By ()X Mim)



1. Computational problems and

algorithmic solutions matrix multiplication

» Input: entries of Nxn-matrices A\B  T(n) = #arithmetic
e Output: entries of C:=Ax B O(n?) operations

/ multiplicationsC_ +18lin.comb.s<_of (n/2)x(n/2)-matrizes.

T1:=(Ay1tA ) By c e » |a -
1,1] “1,2 1,1 A2 1,1| P12

T:=(A A ) By, — _

T.=A, (B, B, ) Co1|Co Aoq| Ao B,1] B>

T:=Ag 5 (B 7By 1) Ci=TstTy Tl G =Tt

T5:=(A 1A, ) (B 11B; ) CormTitly, G Te T+ Tt

Te=(Ao A1) By 1#B, ) | T(n) = 7-T(n/2) +18-(/2)> = O(n'°%:)
T,:=(A 7A, ) B, +B,,) | World record: O(n*3) [F.Le Gall'14]




.Introduction to Algorithms"

Recap of 81 Introduction

1. Computational Problems/Algorithmic Solutions

— “Virtues” of Computer Science:

» Specification
 Algorithm Design
« and Analysis

« Optimality, Example: Square and Multiply
— Semanticsé&cost for various primitive operations:

« Four algorithms computing Fibonacci Numbers
— Mathematics: Recurrences and the Master Theorem
— Polynomial Multiplication: Long, Karatsuba, Toom, Cook

— Matrix Multiplication: complexity as open problem



