"Introduction to Algorithms"

Syllabus

5. Graph Problems

- Recap on Graphs: un/directed, weighted
- Shortest Paths: single-source, all-pairs
- Minimum Spanning Tree: Prim, Kruskal
- Maximum Flow: Ford-Fulkerson, Edmonds-Karp
- Maximum (weighted) Bipartite Matching
- Minimum Cut

5. Graph Problems

graph recap

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Basic graph concepts:

- simple: no *multi*-edges nor loops
- in-/out-/degree
- (un-/directed) path
- (strongly) connected component
- subgraph, induced graph

Handshaking lemma:

$$#E = \sum_{v \in V} \text{ indeg}(v) = \sum_{v \in V} \text{ outdeg}(v)$$

Adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$ Powers of A_G

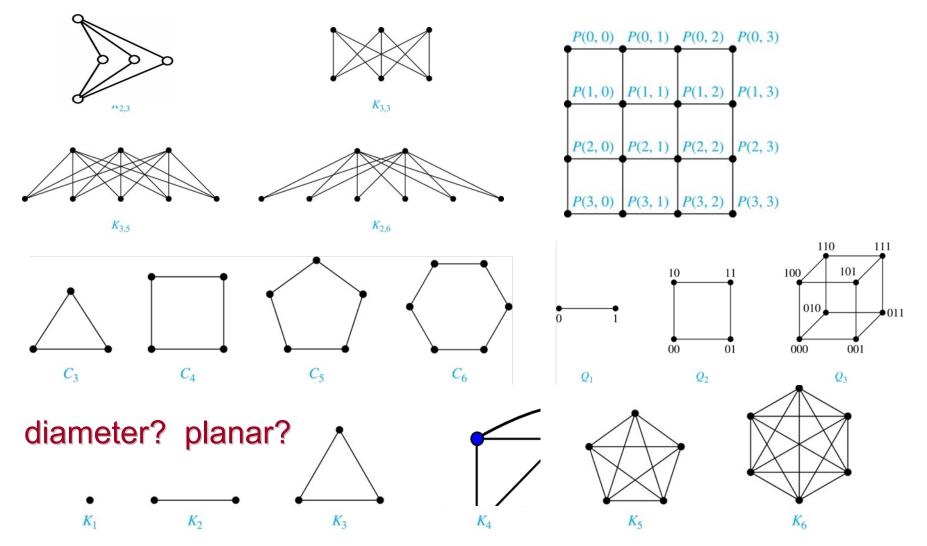
 $E \subseteq V \times V$ directed edges

E symmetric: *un*directed edges

 $w:E \rightarrow \mathbb{N}$ edge weights $\infty/0$: absent 1: present

5. Graph Problems graph examples

Specification: Graph G=(V,E), n=#V vertices, m=#E edges



5. Graph Problems Connectedness

Specification: Graph G=(V,E), n=#V vertices, m=#E edges Input: A_G ; $s, t \in V$ Adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$ $A_{u,v} = \infty$ **Output:** Is there a (directed) path from *s* to *t* in *G*? *no* edge $A_{u,u} = 0$ **DFS**(v) // Is *t* reachable in *G* from *v*? If v=t Return (**true**); S Е D If v is marked visited Return (**false**); В G Mark v as visited; **Reachable**(G,s,t)For each neighbor u of v do For each vertex $v \in V$ if DFS(u) Return (**true**); Mark v as unvisited; Return (**false**); Return *DFS*(*s*)

5. Graph Problems Shortest path(s)

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: A_G $s,t \in V$ Adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$ Output:weight d(s,t) of lightest path from s to t.

Input: $A_G \ s \in V$ Adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: For every $t \in V$, weight d(s,t) of lightest path from s to t.

Input: A_G Adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$ Output: For every $s, t \in V$, weight d(s,t) of lightest path from s to t.

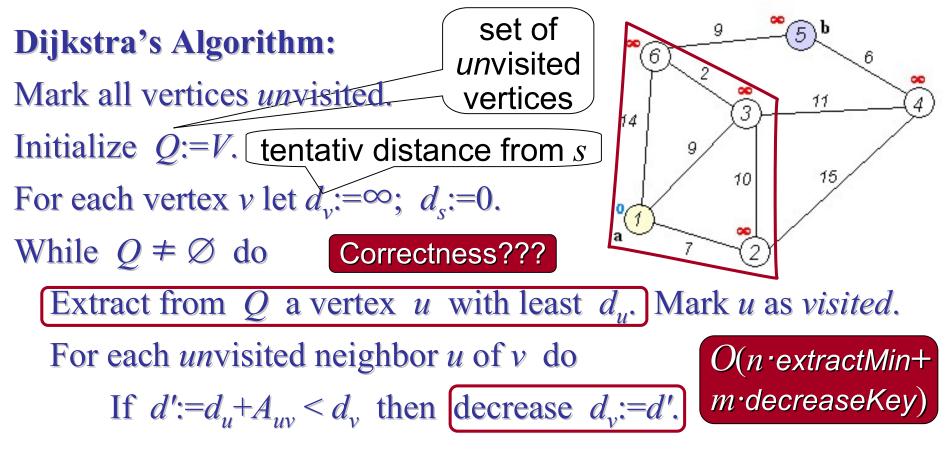
Remark: <u>Shortest</u> paths (on *non*-negative edge weights) are <u>simple</u> paths:
W.I.o.g. consider only <u>positive</u> edge weights: otherwise merge vertices.
In a shortest path (s,v₁,v₂,...v_k,...v_l,...t) from s to t, all segments (v_k,...v_l) are shortest paths.

5. Graph Problems Shortest path(s)

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: A_G ; $s \in V$ Adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: For every $t \in V$, weight d(s,t) of lightest path from s to t.



5. Graph Problems Shortest path(s)

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: A_G Adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: For every $t \in V$, weight d(s,t) of *lightest* path from s to t.

Loop invariant $d_v \ge d(s,v)$. Suppose $M := \{v : d_v > d(s,v)\} \neq \emptyset$. Then $\delta := \min\{d(s,v) : v \in M\}$ and $v \in M$ with $d(s,v) = \delta$ exist. For (s, \ldots, u, v) a *lightest* path to v, it holds $\delta > d(s,u) = d_u$. Thus $d(s,v) = d(s,u) + A_{uv}$ and u gets extracted from Q before v.

For correctness, recall main loop: While $Q \neq \emptyset$ do Extract from Q a vertex u with least d_u . Mark u as visited. For each unvisited neighbor u of v do If $d':=d_u+A_{uv} < d_v$ then decrease $d_v:=d'$.

5. Graph Problems All shortest paths

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: A_G Adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$ Output: For all $s, t \in V$, weight d(s, t) of lightest path from s to t.

Floyd-Warshall Algorithm: runtime $O(n^3)$ $A_{u,v} = \infty$ no edge

For all pairs (u,v) of vertices, initialize $d_{u,v} := A_{u,v}$ For each vertex $u \in V$

For each vertex $v \in V$

For each vertex $w \in V$

If
$$d_{v,w} > d_{v,u} + d_{u,w}$$
 then

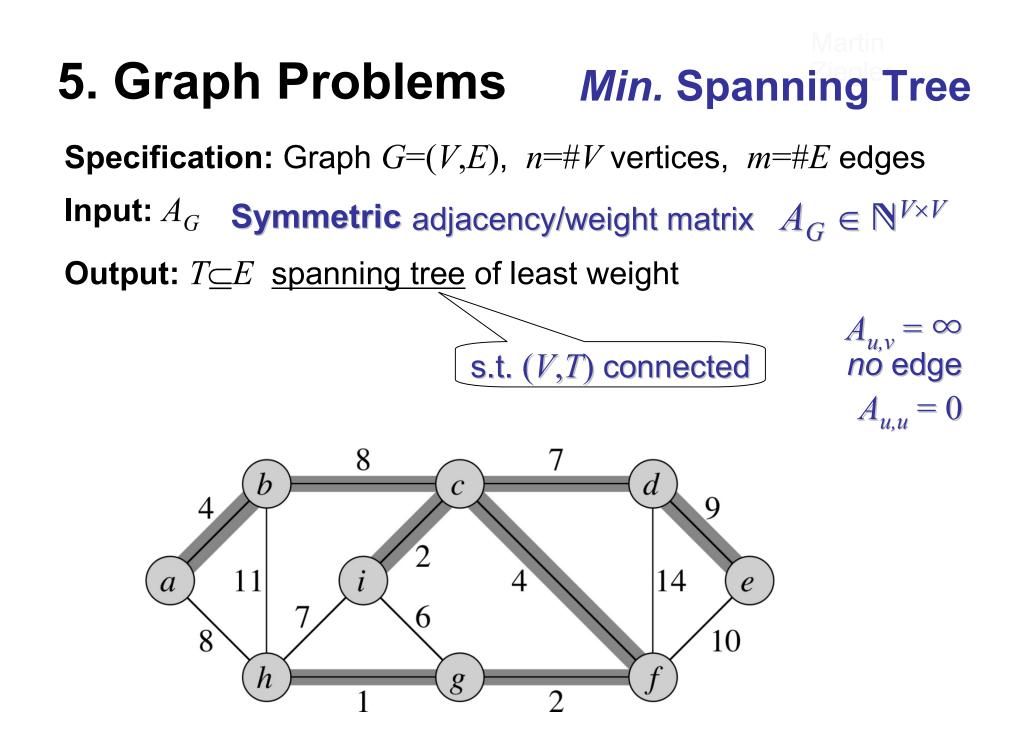
Correctness

$$d_{v,w} := d_{v,u} + d_{u,w}$$

Dijkstra (fixed $s \in V$): $O(n \cdot extractMin+m \cdot decreaseKey)$

 $A_{u,u} = 0$

Repeat for each $s \in V$



5. Graph Problems Prim's Algorithm

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

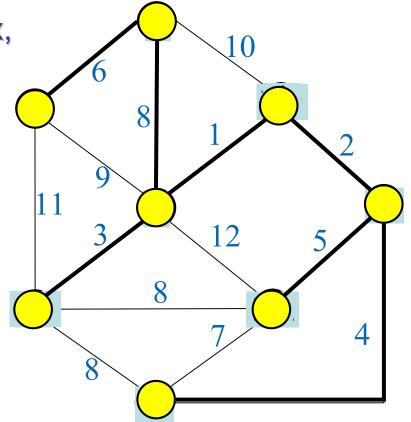
Input: A_G Symmetric adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$ Output: $T \subseteq E$ spanning tree of least weight

- 1. Initialize a tree with a single vertex, chosen arbitrarily from the graph.
- Grow the tree by one edge:
 Of the edges that connect the tree to vertices not yet in the tree,

find the minimum-weight edge, and transfer it to the tree.

3. Repeat step 2

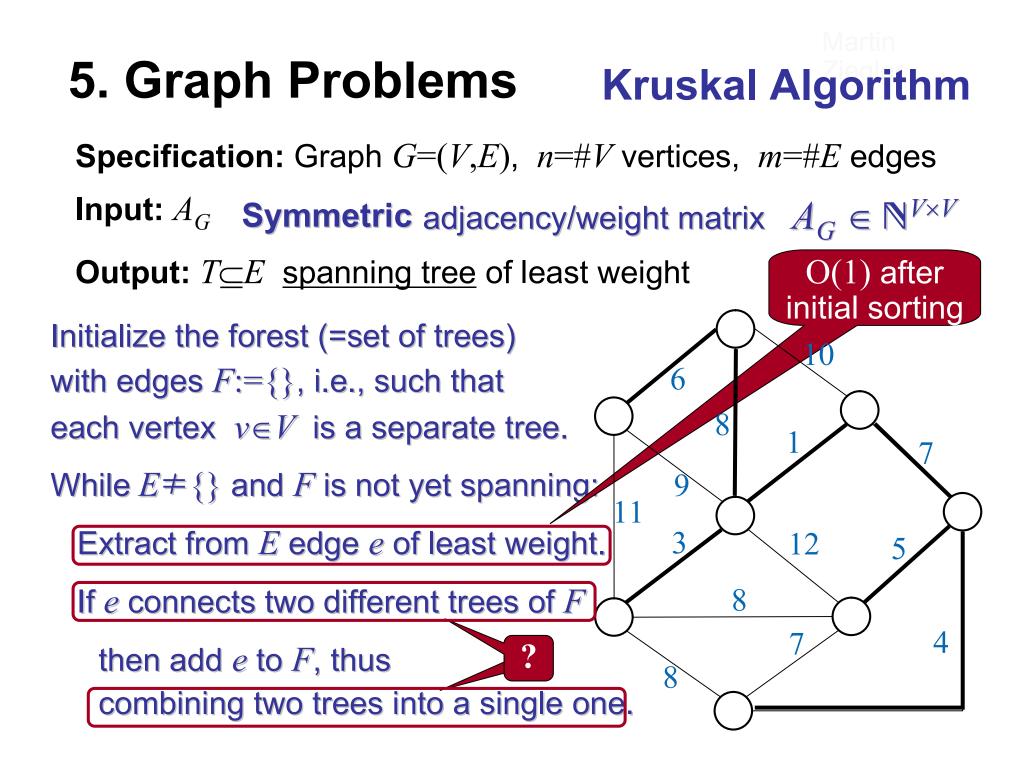
(until all vertices are in the tree).



5. Graph Problems Prim's Algorithm

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Input: A_G Symmetric adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$ $O(n \cdot extractMin +$ **Output:** *T*<u></u>*E* <u>spanning tree</u> of least weight *m*·decreaseKey) Initialize $F:=\emptyset$, Q:=V. Also: 10 $d_v := \infty$ and $e_v := 0$ for all $v \in V$. 8 While $Q \neq \emptyset$ do Q Extract from Q11 a vertex u with least d_u . 12 If $e_u \neq 0$, add edge (u, e_u) to F. 8 For each neighbor $v \in Q$ of u do 4 **8** If $A_{uv} < d_v$ then decrease $d_v := A_{uv}$; $e_v := u$;



5. Graph Problems

Max Flow

Specification: Graph G=(V,E), n=#V vertices, m=#E edges adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$ Input: $s,t \in V, A_G$ Goal: maximize **Output:** $f: V^2 \rightarrow \mathbb{R}$ max. flow from s to t $\sum_{\nu:(s,\nu)\in E} f(s,\nu)$ 3/3 0 $=\sum_{u:(u,t)\in E}f(u,t)$ q 3/3 f flow (from s to t) 0/2 1/4S Lemma: There exists an integral maximal flow. 2/3

Def: A flow from *s* to *t* in *G* with weights $A \ge 0$ is a function $f: V^2 \rightarrow \mathbb{R}$ such that $\forall v \in V \setminus \{s,t\}$: $\sum_{u:(u,v)\in E} f(u,v) = \sum_{w:(v,w)\in E} f(v,w)$ and f(u,v)=-f(v,u). It is admissible if it holds $f(u,v) \le A_{u,v}$

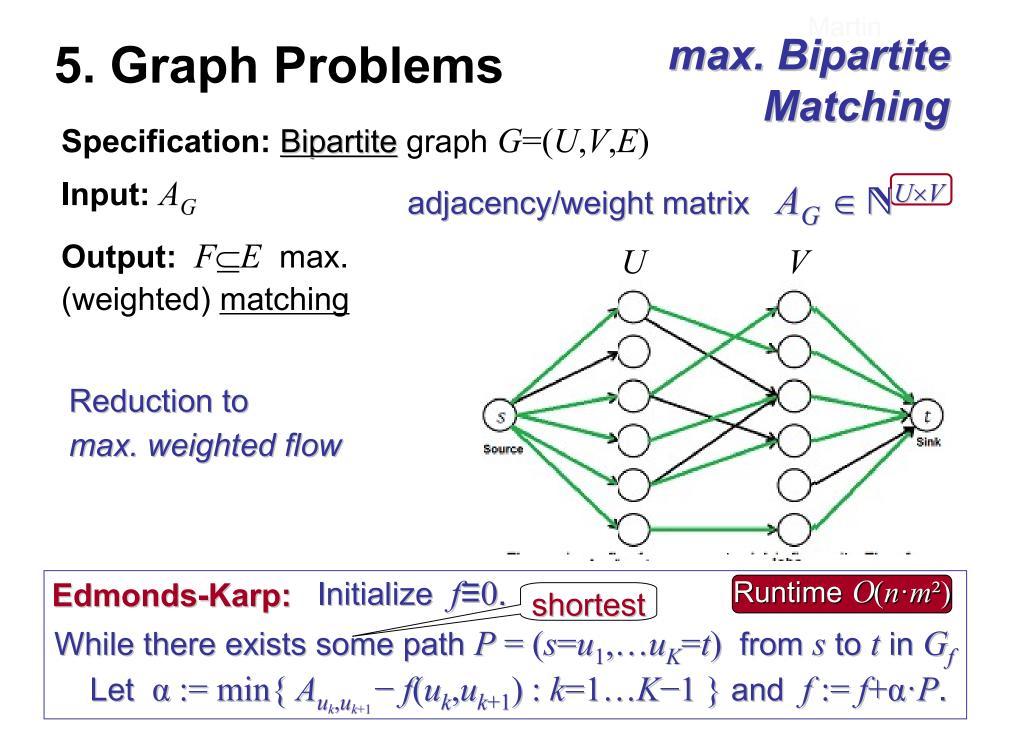
5. Graph Problems Ford-Fulkerson

Specification: Graph G=(V,E), n=#V vertices, m=#E edges adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$ Input: $s,t \in V, A_G$ **Output:** $f: V^2 \to \mathbb{R}$ max. flow from s to t **Goal:** maximize The <u>residual</u> G_f of a graph G with flow $f = \sum_{v:(s,v) \in E} f(s,v)$ has edges $E_f := \{ (u,v) : A_{u,v} > f(u,v) \lor f(v,u) > 0 \}$ 2/3 (v)α=2 2/3 2/2 2/2 3/3 2/2 0/5 0/5 1/50/3 2/2 0/2 $\alpha = 1$ **α=2** Correctness? Runtime $O(m \cdot |f|)$ **Ford-Fulkerson:** Initialize f=0.

While there exists some path $P = (s = u_1, \dots, u_k = t)$ from *s* to *t* in G_f Let $\alpha := \min\{A_{u_k, u_{k+1}} - f(u_k, u_{k+1}) : k = 1 \dots K - 1\}$ and $f := f + \alpha \cdot P$.

5. Graph Problems Edmonds-Karp

Specification: Graph G=(V,E), n=#V vertices, m=#E edges adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$ Input: $s,t \in V, A_G$ **Output:** $f: V^2 \to \mathbb{R}$ max. flow from s to t Goal: maximize The <u>residual</u> G_f of a graph G with flow $f = \sum_{v:(s,v) \in E} f(s,v)$ has edges $E_f := \{ (u,v) : A_{u,v} > f(u,v) \lor f(v,u) > 0 \}$ в 1/1000 0/1000 0/1000 0/1000 1/1000 1/1000 1/1 0/1Α Α 0/1 А 0/1000 0/1000 1/1000 1/1000 1/10000/1000 Runtime $O(n \cdot m^2)$ Edmonds-Karp: Initialize f=0. shortest While there exists some path $P = (s = u_1, \dots, u_K = t)$ from s to t in G_f Let $\alpha := \min\{A_{u_k,u_{k+1}} - f(u_k,u_{k+1}) : k=1...K-1\}$ and $f := f+\alpha \cdot P$.



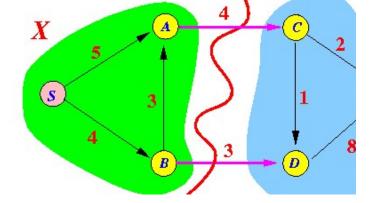
5. Graph Problems

Min Cut

Specification: Graph G=(V,E), n=#V vertices, m=#E edges **Input:** $s,t \in V$, A_G adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$ **Output:** $C \subseteq E$ min.cut between s,t

Def: A cut from s to t in Gis a subset $C \subseteq V$ s.t. $s \in C$, $t \notin C$.

It has capacity
$$\lambda(C) = \sum_{\substack{(u,v) \in E \\ u \in C, v \notin C}} A_{u,v}$$



3

X

(s)

Theorem: $\min_{C \text{ cut } (s,t)} \lambda(C) = \max_{f \text{ flow } (s,t)} |f|$

Proof " \geq ": For every C,f: $\lambda(C) \geq |f|$. " \leq ": Consider $C \subseteq V$ all vertices reachable from *s* in G_f for max. *f* from Ford-Fulkerson. "Introduction to Algorithms"

Martin Ziegler

Summary

5. Graph Problems

- Recap on Graphs: un/directed, weighted
- Shortest Paths: single-source, all-pairs
- Minimum Spanning Tree: Prim, Kruskal
- Maximum Flow: Ford-Fulkerson, Edmonds-Karp
- Maximum (weighted) Bipartite Matching
- Minimum Cut
- Planarity Testing, Maximum Matching \rightarrow CS500