
Martin
Ziegler

Syllabus
5. Graph Problems

– Recap on Graphs: un/directed, weighted

– Shortest Paths: single-source, all-pairs

– Minimum Spanning Tree: Prim, Kruskal

– Maximum Flow: Ford-Fulkerson, Edmonds-Karp

– Maximum (weighted) Bipartite Matching

– Minimum Cut

„Introduction to Algorithms“

Martin
Zieglergraph recap5. Graph Problems

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

EVV directeddirected edges

E symmetric:symmetric:

w:E→ edge weights

Adjacency/weight matrixAdjacency/weight matrix

AG VV

unundirected edgesdirected edges

∞∞/0: absent/0: absent
1: present1: present

Basic graph concepts:

• simple: no multi-edges
nor loops

• in-/out-/degree
• (un-/directed) path

• (strongly) connected component

• subgraph, induced graph

Handshaking lemma:Handshaking lemma:

#E = vV indeg(v) = vV outdeg(v)

Powers of AG

Martin
Zieglergraph examples

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

diameter? planar?diameter? planar?

5. Graph Problems

Martin
ZieglerConnectedness

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Adjacency/weight matrix Adjacency/weight matrix AAGG VVVV

DFS(v) // Is t reachable in G from v?

If v=t Return (true);

If v is marked visited
Return (false);

Mark v as visited;

For each neighbor u of v do
if DFS(u) Return (true);

Return (false);

Input: AG; s,tV

Output: Is there a (directed) path from s to t in G?

Reachable(G,s,t)

For each vertex vV
Mark v as unvisited;

Return DFS(s)

AAu,vu,v = = ∞∞
nono edgeedge

AAu,uu,u = 0= 0

5. Graph Problems

Martin
Ziegler

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Shortest path(s)

Adjacency/weight matrix Adjacency/weight matrix AAGG VVVVInput: AG

Output: For every tV, weight dd((ss,,tt)) of lightest path from s to t.

s,ts,tVV

5. Graph Problems

Adjacency/weight matrix Adjacency/weight matrix AAGG VVVVInput: AG

Output: For every tV, weight dd((ss,,tt)) of lightest path from s to t.For every For every ttVV,,

ssVV

Adjacency/weight matrix Adjacency/weight matrix AAGG VVVVInput: AG

Output: For every tV, weight dd((ss,,tt)) of lightest path from s to t.For every For every s,ts,tVV,,

Remark: Shortest paths (on non-negative edge weights) are simple paths:
●W.l.o.g. consider only positive edge weights: otherwise merge vertices.

● In a shortest path (s,v1,v2,…vk,…vl,…t) from s to t,
all segments (vk,…vl) are shortest paths.

Martin
Ziegler

set of
unvisited
vertices

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Shortest path(s)

Adjacency/weight matrix Adjacency/weight matrix AAGG VVVVInput: AG; s,tV

Output: For every tV, weight dd((ss,,tt)) of lightest path from s to t.For every For every ttVV,,

ssVV

DijkstraDijkstra’’s Algorithm:s Algorithm:

Mark all Mark all verticesvertices ununvisitedvisited..

InitializeInitialize QQ:=:=VV..

For For eacheach vertexvertex vv letlet ddvv:=:=∞∞; ; ddss:=0. :=0.

WhileWhile Q Q ≠≠ dodo

ExtractExtract fromfrom QQ a a vertexvertex uu withwith least least dduu. Mark . Mark uu as as visitedvisited..

For For eacheach ununvisitedvisited neighborneighbor uu of of vv dodo

IfIf dd'':=:=dduu++AAuvuv < < ddvv then decrease then decrease ddvv:=:=d'd'..
OO((nn··extractMinextractMin++
mm··decreaseKeydecreaseKey))

Correctness???Correctness???

tentativ distance from s

5. Graph Problems

Martin
Ziegler

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Adjacency/Adjacency/weightweight matrix matrix AAGG VVVVInput: AG

Output: For every tV, weight dd((ss,,tt)) of lightest path from s to t.

LoopLoop invariant invariant ddvv dd((ss,,vv).). SupposeSuppose MM := { := { vv : : ddvv >> dd((ss,,vv) }) } ≠≠ . .

Then Then δδ := min{ := min{ dd((ss,,vv) :) : vvMM }} and and vvMM withwith dd((ss,,vv)=)=δδ existexist..

For For ((ss , , …… , , uu , , vv)) a a lightestlightest pathpath to to vv, , itit holdsholds δδ > > dd((ss,,uu)) == dduu..

ThusThus dd((ss,,vv))== dd((ss,,uu)+)+AAuvuv and and uu getsgets extractedextracted fromfrom QQ beforebefore v. v. ☇☇

For For correctnesscorrectness, , recallrecall mainmain looploop:: WhileWhile Q Q ≠≠ dodo

ExtractExtract fromfrom QQ a a vertexvertex uu withwith least least dduu. Mark . Mark uu as as visitedvisited..

For For eacheach ununvisitedvisited neighborneighbor uu of of vv dodo

IfIf dd'':=:=dduu++AAuvuv < < ddvv then decrease then decrease ddvv:=:=d'd'..

For every For every ttVV,,

in increasing
order w.r.t. d

5. Graph Problems Shortest path(s)

Martin
ZieglerAll shortest paths

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

Adjacency/weight matrix Adjacency/weight matrix AAGG VVVVInput: AG

Output: For every tV, weight dd((ss,,tt)) of lightest path from s to t.

FloydFloyd--WarshallWarshall Algorithm:Algorithm:

For all For all pairspairs ((uu,,vv) of) of verticesvertices, , initializeinitialize ddu,vu,v:=:=AAu,vu,v

For For eacheach vertexvertex uuVV

For For eacheach vertexvertex vvVV

For For eacheach vertexvertex wwVV

IfIf ddv,wv,w >> ddv,uv,u ++ ddu,wu,w thenthen

ddv,wv,w :=:= ddv,uv,u ++ ddu,wu,w

AAu,vu,v = = ∞∞
nono edgeedge

AAu,uu,u = 0= 0

runtime runtime OO((nn³³))

CorrectnessCorrectness

For For allall s,ts,tVV,,

5. Graph Problems

Dijkstra
(fixed sV):

OO((nn··extractMinextractMin++
mm··decreaseKeydecreaseKey))

Repeat for
each sV

Martin
ZieglerMin. Spanning Tree

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

adjacency/weight matrix adjacency/weight matrix AAGG VVVVInput: AG

Output: TE spanning tree of least weight

AAu,vu,v = = ∞∞
nono edgeedge

AAu,uu,u = 0= 0

SymmetricSymmetric

s.ts.t. . ((VV,,TT)) connectedconnected

5. Graph Problems

Martin
ZieglerPrim’s Algorithm

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

adjacency/weight matrix adjacency/weight matrix AAGG VVVVInput: AG

Output: TE spanning tree of least weight

SymmetricSymmetric

11

6
10

8

9

3

8

8
7 4

5

21

12

∞

∞

∞

∞

∞

∞

∞

6

9

11

10

8

1

3 12

2

5

4

1. 1. InitializeInitialize a a treetree withwith a a singlesingle vertexvertex, ,

chosenchosen arbitrarilyarbitrarily fromfrom thethe graphgraph..

2. 2. GrowGrow thethe treetree byby oneone edgeedge: :

Of Of thethe edgesedges thatthat connectconnect thethe treetree

to to verticesvertices notnot yetyet in in thethe treetree, ,

find find thethe minimumminimum--weightweight edgeedge, ,

and and transfertransfer itit to to thethe treetree..

3. 3. RepeatRepeat stepstep 2 2

((untiluntil all all verticesvertices areare in in thethe treetree).).

5. Graph Problems

Martin
ZieglerPrim’s Algorithm

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

adjacency/weight matrix adjacency/weight matrix AAGG VVVVInput: AG

Output: TE spanning tree of least weight

SymmetricSymmetric

11

6
10

8

9

3

8

8
7 4

5

21

12

∞

∞

∞

∞

∞

∞

∞

6

9

11

10

8

1

3 12

2

5

4

InitializeInitialize FF:=:=, , QQ:=:=VV. Also:. Also:
ddvv:=:=∞∞ and and eevv:=0 :=0 forfor all all vvVV..

WhileWhile QQ≠≠ dodo

ExtractExtract fromfrom QQ
a a vertexvertex uu withwith least least dduu. .

IfIf eeuu≠≠0, 0, addadd edgeedge ((uu,,eeuu) to) to FF..

For For eacheach neighborneighbor vvQQ of of uu dodo

IfIf AAuvuv < < ddvv then then
decrease decrease ddvv:=:= AAuvuv ; ; eevv:=:=uu;;

OO((nn··extractMinextractMin++
mm··decreaseKeydecreaseKey))

5. Graph Problems

Martin
Ziegler

Initialize the forestInitialize the forest (=set of trees) (=set of trees)

with edges with edges FF:={}:={}, i.e., such that , i.e., such that

each vertex each vertex vvVV is a separateis a separate tree.tree.

WhileWhile EE≠≠{}{} andand FF is not yetis not yet spanning:spanning:

Extract from Extract from EE edge edge ee of least weight.of least weight.

If If ee connects two different trees of connects two different trees of FF

then add then add ee to to FF, thus , thus
combining two trees into a single one.combining two trees into a single one.

??

O(1) after
initial sorting

Kruskal Algorithm

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

adjacency/weight matrix adjacency/weight matrix AAGG VVVVInput: AG

Output: TE spanning tree of least weight

SymmetricSymmetric

11

10

9

3

8

8
7 4

5

71

12

6

8

5. Graph Problems

Martin
ZieglerMax Flow

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

adjacency/weight matrix adjacency/weight matrix AAGG VVVVInput: s,tV, AG

Output: f:V²→ max. flow from s to t

Def: A flowflow from s to t in G with weights A≥0 is a function
f:V²→ such that vV\{s,t}: u:(u,v)E f(u,v) = w:(v,w)E f(v,w)
and f(u,v)=−f(v,u). It is admissibleadmissible if it holds f(u,v) ≤ Au,v

Goal:Goal: maximizemaximize
vv:(:(ss,,vv))EE ff((ss,,vv))

= = uu:(:(uu,,tt))EE ff((uu,,tt))

ff flowflow ((fromfrom ss to to tt))

Lemma:Lemma: There exists There exists
an an integralintegral maximal flow.maximal flow.

5. Graph Problems

Martin
Ziegler

Def: A flowflow from s to t in G with weights A≥0 is a function
f:V²→ such that vV\{s,t}: u:(u,v)E f(u,v) = w:(v,w)E f(v,w)
and f(u,v)=−f(v,u). It is admissibleadmissible if it holds f(u,v) ≤ Au,v

Ford-Fulkerson

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

adjacency/weight matrix adjacency/weight matrix AAGG VVVVInput: s,tV, AG

Output: f:VV²²→ max. flow from s to t Goal:Goal: maximizemaximize
||ff|:= |:= vv:(:(ss,,vv))EE ff((ss,,vv))The residual Gf of a graph G with flow f

has edges Ef := { (u,v) : Au,v >> f(u,v) f(v,u) > 0 }

5. Graph Problems

=2

=2 =1

FordFord--FulkersonFulkerson:: InitializeInitialize ff≡≡00..

WhileWhile therethere existsexists somesome pathpath P P = = ((ss==uu11,,……uuKK==tt)) fromfrom ss to to tt in in GGff

LetLet αα := min:= min{ { AAuukk,,uukk+1+1
−− ff((uukk,,uukk+1+1) :) : kk=1=1……KK−−1 }1 } and and ff := := ff++αα··PP..

Correctness?Correctness? Termination?Termination?Runtime Runtime OO((mm··||ff|)|)

Martin
Ziegler

FordFord--FulkersonFulkerson:: InitializeInitialize ff≡≡00..

WhileWhile therethere existsexists somesome pathpath P P = = ((ss==uu11,,……uuKK==tt)) fromfrom ss to to tt in in GGff

LetLet αα := min:= min{ { AAuukk,,uukk+1+1
−− ff((uukk,,uukk+1+1) :) : kk=1=1……KK−−1 }1 } and and ff := := ff++αα··PP..

Runtime Runtime OO((mm··||ff|)|)

EdmondsEdmonds--KarpKarp

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

adjacency/weight matrix adjacency/weight matrix AAGG VVVVInput: s,tV, AG

Output: f:VV²²→ max. flow from s to t Goal:Goal: maximizemaximize
||ff|:= |:= vv:(:(ss,,vv))EE ff((ss,,vv))

Runtime Runtime OO((nn··mm²²))shortestshortestEdmondsEdmonds--KarpKarp: :

5. Graph Problems

The residual Gf of a graph G with flow f
has edges Ef := { (u,v) : Au,v >> f(u,v) f(v,u) > 0 }

Martin
Ziegler

FordFord--FulkersonFulkerson:: InitializeInitialize ff≡≡00..

WhileWhile therethere existsexists somesome pathpath P P = = ((ss==uu11,,……uuKK==tt)) fromfrom ss to to tt in in GGff

LetLet αα := min:= min{ { AAuukk,,uukk+1+1
−− ff((uukk,,uukk+1+1) :) : kk=1=1……KK−−1 }1 } and and ff := := ff++αα··PP..

Runtime Runtime OO((nn··mm²²))

max. Bipartitemax. Bipartite
MatchingMatching

Specification: BipartiteBipartite graph G=(U,V,E)

Input: AG

Output: FE max.
(weighted) matching

shortestshortestEdmondsEdmonds--KarpKarp: :

U V

adjacency/weight matrix adjacency/weight matrix AAGG UUVV

5. Graph Problems

Reduction to Reduction to

max. weighted flowmax. weighted flow

Martin
Ziegler

Goal:Goal: minminimizeimize λλ((CC)) : : CC cutcut ((ss,,tt))

Min Cut

Specification: Graph G=(V,E), n=#V vertices, m=#E edges

adjacency/weight matrix adjacency/weight matrix AAGG VVVVInput: s,tV, AG

Output: CE min.cut between s,t

Def:Def: A A cutcut from from ss to to tt in in GG
is a subset is a subset CCVV s.ts.t. . ssCC, , ttCC. .

ItIt has has capacitycapacity λλ((CC) =) = ((uu,,vv))EE AAu,vu,v

Theorem:Theorem: min min λλ((CC) =) = maxmax ||ff||

uuC,vC,vCC

CC cutcut ((ss,,tt)) ff flowflow ((ss,,tt))

ProofProof """: For ": For everyevery CC,,ff: : λλ((CC)) ||ff|.|.
""≤≤": ": ConsiderConsider CCVV all all verticesvertices reachablereachable
fromfrom ss in in GGff forfor max. max. ff fromfrom FordFord--FulkersonFulkerson..

5. Graph Problems

Martin
Ziegler

Summary
5. Graph Problems

– Recap on Graphs: un/directed, weighted

– Shortest Paths: single-source, all-pairs

– Minimum Spanning Tree: Prim, Kruskal

– Maximum Flow: Ford-Fulkerson, Edmonds-Karp

– Maximum (weighted) Bipartite Matching

– Minimum Cut

–– Planarity Testing, Maximum Matching Planarity Testing, Maximum Matching →→ CS500CS500

„Introduction to Algorithms“

