CS500 Design and Analysis of Algorithm

Average-Case Analysis of QuickSort

Prove that $T(n)=\mathcal{O}(n \log n)$ solves the recurrence

$$
\begin{equation*}
T(n)=1 / n \cdot \sum_{j=1}^{n} T(j)+T(n-j)+\mathcal{O}(n) \tag{1}
\end{equation*}
$$

First "proof":

$$
\begin{gathered}
1 / n \cdot \sum_{j=1}^{n} \mathcal{O}(j \cdot \log j)+\mathcal{O}((n-j) \cdot \log (n-j))+\mathcal{O}(n) \\
\leq \frac{2}{n} \cdot n \cdot \mathcal{O}(n \cdot \log n)+\mathcal{O}(n)=\mathcal{O}(n \cdot \log n)
\end{gathered}
$$

But then it would similarly follow that $T(n)=\mathcal{O}(n)$ solves Equation (1) as well, which is does not:

$$
\begin{gathered}
2 / n \cdot \sum_{j=1}^{n} \mathcal{O}(j)+\mathcal{O}(n) \\
\leq 2 / n \cdot n \cdot \mathcal{O}(n)+\mathcal{O}(n)=\mathcal{O}(n)
\end{gathered}
$$

A correct proof therefore must take care of constants and lower terms otherwise ignored in big-Oh:
Replace $\mathcal{O}(n)$ in Equation (1) with $c \cdot n$; and make the Ansatz $T(n)=C \cdot n \log n$. Next record that, for (w.l.o.g. even) n,

$$
\begin{aligned}
\sum_{j=1}^{n} j \cdot \log j & \leq \sum_{j=1}^{n / 2} j \cdot \log (n / 2)+\sum_{j=1}^{n / 2}(j+n / 2) \cdot \log n \\
& =n / 4 \cdot(n / 2+1) \cdot \log (n / 2)+n / 4 \cdot(n / 2+1) \cdot \log (n)+n^{2} / 4 \cdot \log n \\
& =n^{2} / 2 \cdot \log (n)+n / 4 \cdot \log (n / 2)-n^{2} / 8
\end{aligned}
$$

Important is not only the constant $\frac{1}{2}$ in front of the asymptotically leading term $n^{2} \cdot \log n$, but also the subtracted quadratic term. Because now, indeed, $1 / n \cdot \sum_{j} T(j)+T(n-j)+c \cdot n=$
$=2 / n \cdot \sum_{j=1}^{n} C \cdot(j \cdot \log j)+c \cdot n \leq C \cdot n \cdot \log (n)+C / 2 \cdot \log (n / 2) \underbrace{-C \cdot n / 4+c \cdot n}$
$\leq C \cdot n \cdot \log (n)$ for $C>4 c$ and all sufficiently large n.

