
CS500 Design and Analysis of Algorithm

Average-Case Analysis of QuickSort

Prove that T (n) = O(n log n) solves the recurrence

T (n) = 1/n ·
∑n

j=1
T (j) + T (n− j) + O(n) . (1)

First “proof”:

1/n ·
∑n

j=1
O
(
j · log j

)
+ O

(
(n− j) · log(n− j)

)
+ O(n)

≤ 2
n · n · O(n · log n) + O(n) = O(n · log n) .

But then it would similarly follow that T (n) = O(n) solves Equation (1) as
well, which is does not:

2/n ·
∑n

j=1
O(j) + O(n)

≤ 2/n · n · O(n) + O(n) = O(n) .

A correct proof therefore must take care of constants and lower terms oth-
erwise ignored in big-Oh:
Replace O(n) in Equation (1) with c ·n; and make the Ansatz T (n) = C ·n log n.

Next record that, for (w.l.o.g. even) n,

n∑
j=1

j · log j ≤
n/2∑
j=1

j · log(n/2) +

n/2∑
j=1

(j + n/2) · log n

= n/4 · (n/2 + 1) · log(n/2/2/2) + n/4 · (n/2 + 1) · log(n) + n2/4 · log n
= n2/2 · log(n) + n/4 · log(n/2) − n2/8− n2/8− n2/8 .

Important is not only the constant 1
2 in front of the asymptotically leading

term n2 · log n, but also the subtracted quadratic term. Because now, indeed,
1/n ·

∑
j T (j) + T (n− j) + c · n =

= 2/n ·
n∑

j=1

C · (j · log j) + c ·n ≤ C ·n · log(n) + C/2 · log(n/2) −C · n/4 + c · n︸ ︷︷ ︸
≤ C · n · log(n) for C > 4c and all sufficiently large n.

1


