4. Graph Problems

Specification: Graph \(G=(V,E) \), \(n=\#V \) vertices, \(m=\#E \) edges

Basic graph concepts:
- simple: no multi-edges nor loops
- in-/out-/degree
- (un-/directed) path
- (strongly) connected component
- subgraph, induced graph

Handshaking lemma:
\(#E = \sum_{v \in V} \text{indeg}(v) = \sum_{v \in V} \text{outdeg}(v) \)

Adjacency/weight matrix
\(A_G \in \mathbb{N}^{V \times V} \)

Powers of \(A_G \)
4. Graph Problems

Specification: Graph $G=(V,E)$, $n=\#V$ vertices, $m=\#E$ edges

Connectedness

Input: $A_G; s,t \in V$ Adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: Is there a (directed) path from s to t in G?

DFS(v) // Is t reachable in G from v?

If v is marked visited
Return (false);
If $v=t$ Return (true);
Mark v as visited;
For each neighbor u of v do
 if DFS(u) Return (true);
Return (false);

Reachable(G,s,t)
For each vertex $v \in V$
 Mark v as unvisited;
Return DFS(s)
4. Graph Problems

Shortest path(s)

Specification: Graph $G=(V,E)$, $n=\#V$ vertices, $m=\#E$ edges

Input: A_G: $s \in V$ Adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: For every $t \in V$, weight $d(s,t)$ of lightest path from s to t.

Dijkstra’s Algorithm:

Mark all vertices unvisited.

Initialize $Q := V$. tentative distance from s

For each vertex v let $d_v := \infty$; $d_s := 0$.

While $Q \neq \emptyset$ do

Correctness???

Extract from Q a vertex u with least d_u. Mark u as visited.

For each unvisited neighbor u of v do

If $d' := d_u + A_{uv} < d_v$ then decrease $d_v := d'$.

$O(n \cdot \text{extractMin} + m \cdot \text{decreaseKey})$

array $O(n \cdot n + m \cdot 1)$

All shortest paths

Specification: Graph $G=(V,E)$, $n=\#V$ vertices, $m=\#E$ edges

Input: A_G Adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: For every $t \in V$, weight $d(s,t)$ of lightest path from s to t.

Loop invariant $d_v \geq d(s,v)$. Suppose $M := \{v: d_v > d(s,v)\} \neq \emptyset$.

Then $\delta := \min\{d(s,v): v \in M\}$ and $v \in M$ with $d(s,v) = \delta$ exist.

For (s, \ldots, u, v) a lightest path to v, it holds $\delta > d(s,u) = d_u$.

Thus $d(s,v) = d(s,u) + A_{uv}$ and u gets extracted from Q before v.

For correctness, recall main loop: While $Q \neq \emptyset$ do

Extract from Q a vertex u with least d_u. Mark u as visited.

For each unvisited neighbor u of v do

If $d' := d_u + A_{uv} < d_v$ then decrease $d_v := d'$.

in increasing order w.r.t. d
4. Graph Problems

All shortest paths

Specification: Graph $G=(V,E)$, $n=\#V$ vertices, $m=\#E$ edges

Input: A_G Adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: For all $s,t \in V$, weight $d(s,t)$ of lightest path from s to t.

Floyd-Warshall Algorithm:

For all pairs (u,v) of vertices, initialize $d_{u,v} := A_{u,v}$

$A_{u,u} = 0$

For each vertex $u \in V$

For each vertex $v \in V$

For each vertex $w \in V$

If $d_{v,w} > d_{v,u} + d_{u,w}$ then

$d_{v,w} := d_{v,u} + d_{u,w}$

Correctness?

runtime $O(n^3)$

4. Graph Problems

Min. Spanning Tree

Specification: Graph $G=(V,E)$, $n=\#V$ vertices, $m=\#E$ edges

Input: A_G Symmetric adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: $T \subseteq E$ spanning tree of least weight

$s.t. (V,T)$ connected

$A_{u,v} = \infty$

no edge

$A_{u,u} = 0$
4. Graph Problems

Prim’s Algorithm

Specification: Graph $G=(V,E)$, $n=\#V$ vertices, $m=\#E$ edges

Input: A_G Symmetric adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: $T \subseteq E$ spanning tree of least weight

1. Initialize a tree with a single vertex, chosen arbitrarily from the graph.
2. Grow the tree by one edge:
 Of the edges that connect the tree to vertices not yet in the tree, find the minimum-weight edge, and transfer it to the tree.
3. Repeat step 2 (until all vertices are in the tree).

4. Graph Problems

Prim’s Algorithm

Specification: Graph $G=(V,E)$, $n=\#V$ vertices, $m=\#E$ edges

Input: A_G Symmetric adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: $T \subseteq E$ spanning tree of least weight

Initialize $F := \emptyset$, $Q := V$. Also: $d_v := \infty$ and $e_v := 0$ for all $v \in V$.

While $Q \neq \emptyset$ do
 Extract from Q a vertex u with least d_u.
 If $e_u \neq 0$, add edge (u,e_u) to F.
 For each neighbor $v \in Q$ of u do
 If $A_{uv} < d_v$ then decrease $d_v := A_{uv}$; $e_v := u;$
4. Graph Problems

Kruskal Algorithm

Specification: Graph $G=(V,E)$, $n=\#V$ vertices, $m=\#E$ edges

Input: A_G Symmetric adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: $T \subseteq E$ spanning tree of least weight

Initialize the forest (=set of trees) with edges $F:=\{\}$, i.e., such that each vertex $v \in V$ is a separate tree.

While $E \neq \{}$ and F is not yet spanning:

- Extract from E edge e of least weight.
- If e connects two different trees of F then add e to F, thus combining two trees into a single one.

Max Flow

Specification: Graph $G=(V,E)$, $n=\#V$ vertices, $m=\#E$ edges

Input: $s,t \in V$, A_G adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: $f:E \rightarrow \mathbb{N}$ max. flow from s to t

Goal: maximize $\sum_{v:(s,v) \in E} f(s,v) = \sum_{u:(u,t) \in E} f(u,t)$

Def: A flow from s to t in G with weights $A \geq 0$ is a function $f:E \rightarrow \mathbb{R}$ such that $\forall v \in V \setminus \{s,t\}: \sum_{u:(u,v) \in E} f(u,v) = \sum_{w:(v,w) \in E} f(v,w)$. It is admissible if it holds $f(u,v) \leq A_{u,v}$

Lemma: There exists an integral maximal flow.
4. Graph Problems

Ford-Fulkerson

Specification: Graph $G=(V,E)$, $n=\#V$ vertices, $m=\#E$ edges

Input: $s,t \in V$, A_G adjacency/weight matrix $A_G \in \mathbb{N}^{\times \times V}$

Output: $f:E \rightarrow \mathbb{N}$ max. flow from s to t

The residual G_f of a graph G with flow f has edges $E_f := \{(u,v) : A_{u,v} > f(u,v) \lor f(v,u) > 0\}$

Goal: maximize $|f| := \sum_{v:(s,v) \in E} f(s,v)$

Ford-Fulkerson: Initialize $f \equiv 0$. Correcness? Runtime $O(m|f|)$

While there exists a path $P = (s=u_1, \ldots, u_K=t)$ from s to t in G_f

Let $\alpha := \min \{ A_{u_i,u_{i+1}} - f(u_k,u_{k+1}) : k=1\ldots K-1 \}$ and $f := f + \alpha \cdot P$.

4. Graph Problems

Edmonds-Karp

Specification: Graph $G=(V,E)$, $n=\#V$ vertices, $m=\#E$ edges

Input: $s,t \in V$, A_G adjacency/weight matrix $A_G \in \mathbb{N}^{\times \times V}$

Output: $f:E \rightarrow \mathbb{N}$ max. flow from s to t

The residual G_f of a graph G with flow f has edges $E_f := \{(u,v) : A_{u,v} > f(u,v) \lor f(v,u) > 0\}$

Goal: maximize $|f| := \sum_{v:(s,v) \in E} f(s,v)$

Edmonds-Karp: Initialize $f \equiv 0$. shortest Runtime $O(n \cdot m^2)$

While there exists a path $P = (s=u_1, \ldots, u_K=t)$ from s to t in G_f

Let $\alpha := \min \{ A_{u_i,u_{i+1}} - f(u_k,u_{k+1}) : k=1\ldots K-1 \}$ and $f := f + \alpha \cdot P$.

4. Graph Problems

Specification: Bipartite graph $G=(U,V,E)$

Input: A_G adjacency/weight matrix $A_G \in \mathbb{N}^{U \times V}$

Output: $F \subseteq E$ max. (weighted) matching

Edmonds-Karp: Initialize $f \equiv 0$.

While there exists a path P from s to t in G_f

Let $\alpha := \min \{ A_u,u_{i+1} - f(u_k,u_{k+1}) : k=1…K-1 \}$ and $f := f + \alpha \cdot P$.

4. Graph Problems

Specification: Graph $G=(V,E)$, $n=\#V$ vertices, $m=\#E$ edges

Input: $s,t \in V$, A_G adjacency/weight matrix $A_G \in \mathbb{N}^{V \times V}$

Output: $C \subseteq E$ min.cut between s,t

Def: A cut from s to t in G

is a subset $C \subseteq V$ s.t. $s \in C$, $t \notin C$.

It has capacity $\lambda(C) = \sum_{u,v \in E} A_{u,v}$

$s \in C, v \notin C$

Theorem: $\min \lambda(C) = \max |f|_{cut(s,t)}$ $|f|_{flow(s,t)}$

Proof

"\geq": For every C: $\lambda(C) \geq |f|$.

"\leq": Consider $C \subseteq V$ all vertices reachable from s in G_f for max. f from Ford-Fulkerson.