"Introduction to Algorithms"

Syllabus

- 6. Paradigms
 - Divide and Conquer
 - Dynamic Programming
 - Greedy
 - Backtracking
 - Branch and Bound

6. Paradigms Divide and Conquer

Examples: Repeated Squaring / Fibonacci

Karatsuba, Toom, Cook, ...

Matrix Multiplication

 $T(n) = S(n) + T(n_1) + \ldots + T(n_k) + R(m)$

6. Paradigms Dynamic Programming

Longest Comm Fill table LCS[<i>i</i> , shared by	non Substring Algorithm: j] := length of longest components v [0 i -1]	mon suffix $Coal:$ and $w[0,j-1]$
LCS[0,j] = 0 LCS[i,0] = 0	LCS[i+1,j+1] = LCS[i = 0]	(j]+1 if $v[i]=w[j]if v[i]\neq w[j]$
Wagner-Fischer Algorithm:Goal: $d[n,m]$ Fill table $d[i,j] :=$ edit distance of $v[0i-1]$ and $w[0j-1]$		
$d[0,j] = j \qquad d[i]$ $d[i,0] = i$	+1,j+1] = d[i,j] = min{ d[i,j+1]+1, d[i-1)	: $v[i]=w[j]$ +1,j]+1 } : $v[i]\neq w[j]$

Decompose the problem into *overlapping* sub-problems such that their *optimal* solutions *combine* to the original problem.

6. Paradigms

Greedy

Example: Lightest Path from s to t in given weighted graph G

Heuristic: Repeatedly follow "cheapest" edge until arriving. This may *not* yield the lightest path!

Cashier's Algorithm to **Change-Making Problem:** Express any given amount using a least number of coins/bills of values 1¢, 2¢, 5¢, 10¢, 20¢, 50¢, $1\in$, $2\in$, $5\in$, $10\in$, $20\in$, $50\in$

Huffman Problem: <u>Minimize expected length</u> $\sum_{s \in \Sigma} d(l_s) \cdot f_s$ Repeatedly extract symbols $s, t \in \Sigma$ with least frequencies f_s, f_t .

Make whatever choice seems best at the moment and proceed to solve the subproblems that arise later without reconsidering previous choices.

6. Paradigms

Backtracking

Backtracking incrementally builds candidates to solutions,

and abandons a candidate ("backtracks") as soon as it determines that the candidate cannot possibly be completed to a valid solution.

Make whatever choice seems best at the moment and proceed to solve the subproblems that arise later with**out** reconsidering previous choices.

6. Paradigms

Branch and Bound

Definition: A tree with weighted nodes is *heap ordered* if the weight of any node is no less than that of its parent.

Problem: Find lightest leaf in a given heap ordered tree.

