§2 Advanced Computability

- WHILE programs
- UTM Theorem
- Normalform Theorem
- SMN Theorem / Currying (Schönfinkeling)
- Fixedpoint Theorem, Quines
- Rice-Myhill-Shapiro
- Oracle WHILE programs, Higher Halting Problem
- Arithmetic Hierarchy: semantially & syntactically
- Post's Problem / Friedberg&Muchnik's Proof

WHILE Programs

Syntax in Backus—Naur Form: body better

$$P := (x_j := 0 \mid x_j := x_i \pm 1 \mid P; P \mid modify x_j$$

LOOP x_j DO P END | WHILE x_j DO P END)

Semantics: loop executed <u>as long as</u> $x_j \ne 0$

Observation: a) To every LOOP program P there is an equivalent WHILE program P' with out LOOPs.

b) As opposed to LOOP programs, WHILE programs have *un*decidable Halting Problem.

Rado's Corollary: WHILE programs do **not** admit a bound t(P,n) such that P on input $\underline{x} \in \mathbb{N}^k$ either at most $t(P,||\underline{x}||_1)$ steps or runs indefinitely.

First UTM Theorem

UTM-Theorem: There exists a <u>LOOP</u> program U' that, given $\langle P \rangle \in \mathbb{N}$ and $\langle x_1, ..., x_k \rangle \in \mathbb{N}$ and $N \in \mathbb{N}$, simulates P on input $(x_1, ..., x_k)$ for N steps.

Proof (Sketch): Use one variable y for $\langle x_1,...,x_k \rangle$, and z to store the current program counter of P:

```
Switch/case \langle P \rangle[z] of: \langle x_1, \dots x_j, \dots, x_k \rangle := \langle x_1, \dots 0, \dots, x_k \rangle ; z := z + 1 "x_j := x_j + 1" : \langle x_1, \dots x_j, \dots x_k \rangle := \langle x_1, \dots x_i + 1 \dots x_k \rangle ; z := z + 1 "WHILE \ x_j \ DO" : if x_j = 0 then z := 1 + \# of corresponding END "END" : z := \liminf of corresponding WHILE
```

Definition: Let $\langle P \rangle \in \mathbb{N}$ denote the encoding of WHILE program P (e.g. as ascii sequence).

Normalform Theorem

UTM-Theorem: There exists a <u>LOOP</u> program U' that, given $\langle P \rangle \in \mathbb{N}$ and $\langle x_1, ..., x_k \rangle \in \mathbb{N}$ and $N \in \mathbb{N}$, simulates P on input $(x_1, ..., x_k)$ for N steps.

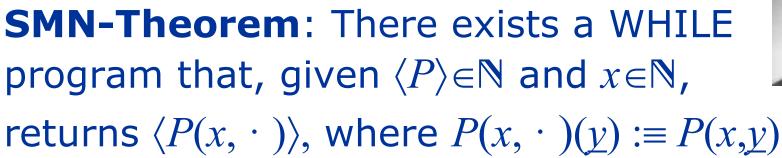
Normalform-Thm: To every WHILE program P there exists an equivalent one P' containing only one WHILE command (and several LOOPs).

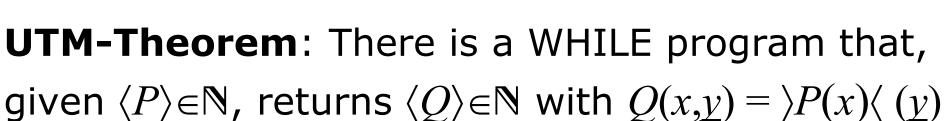
Normalform Theorem 2: Decision problem $L \subseteq \mathbb{N}$ is <u>semi</u>-decidable (by a WHILE program) iff $L = \{x \in \mathbb{N} : \exists y : \langle x, y \rangle \in V\}$ for some <u>decidable</u> $V \subseteq \mathbb{N}$

SMN Theorem: Currying

Definition: Let $C = \langle P \rangle \in \mathbb{N}$ denote the encoding of WHILE program P, $P = \rangle C \langle$ its inverse/decoding.

Type conversion **example** $f(x,y) = \sin(x) \cdot e^y$





WHILE program that, given $\langle P \rangle, \langle Q \rangle$, returns $\langle Q \circ P \rangle$

Fixedpoint Theorem and Quines

Def: For partial functions $f,g: \subseteq \mathbb{N} \to \mathbb{N}$ write $f \equiv g$ to mean dom(f)=dom(g) and $\forall x \in dom: f(x)=g(x)$.

$$\langle P \rangle \langle P \rangle \langle P \rangle$$

$$\left(\langle \ \rangle C \langle \ \rangle \equiv C \right)$$

$$\left(\langle \rangle C \langle \rangle \equiv C \right) \quad \left(x \equiv y \quad :\Leftrightarrow \quad \langle x \rangle x \langle \equiv \langle y \rangle \rangle \right)$$

Theorem: Every total computable function $\phi:\mathbb{N}\to\mathbb{N}$ has a "semantic fixedpoint", i.e. $x \in \mathbb{N}$ s.t. $\varphi(x) = x$.

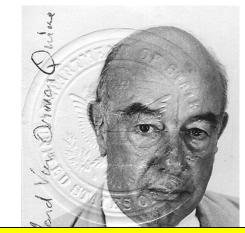
Proof: Let $\varphi(x) = \varphi \circ \psi'(\langle \varphi \circ \psi \rangle)$, where $\psi(y) := \langle y \rangle(y)$

 $\psi'(y) := \langle z \rightarrow \rangle \psi(y) \langle (z) \rangle$ semantic extension of $\psi(y)$

Application (Quines):

Let $\mathcal{A} = \mathcal{A}(p,y)$ be a program.

Consider "fixedpoint" P of $\varphi(p) := \langle \mathcal{A}(p, \cdot) \rangle$.



 $\mathbb{N} \ni \langle P \rangle = \text{code of program } P_{\bullet} \setminus C \langle = \text{program with code } C \in \mathbb{N}$

Rice's Theorem K

Un/Decidable?: a) syntactical correctness

- b) $\{\langle P \rangle : \langle P \rangle \text{ is } \leq 1000 \text{ characters long } \}$
- c) $\{\langle P \rangle : P \text{ makes } \leq 1000 \text{ steps (on input } \epsilon) \} \checkmark$
- d) $\{\langle P \rangle : P \text{ terminates (on input } \epsilon)\} = H$
- e) $\{\langle P \rangle : L(P) \neq \emptyset \} = N$

where $L(P) \subseteq \mathbb{N}$ denote the set semi-decided by P.

Theorem (Rice-Myhill-Shapiro): Fix $S \subset 2^{\mathbb{N}}$.

Suppose $L^- \notin S$ and $L^+ \in S$ are semi-decidable.

Then $\mathcal{L}(S) := \{ \langle P \rangle : L(P) \in S \}$ is <u>un</u>decidable.

Rice's Theorem K

"Any non-trivial <u>semantic</u> property of a given program is undecidable"

Proof: First suppose $\emptyset \in S$. Given P, decide " $\langle P \rangle \in H$ " so:

- •Construct from P a program Q which
 - -first performs *P* (and doesn't terminate if *P* doesn't)
 - -then invokes the program semi-deciding L^- .
- Q semi-decides $\varnothing \in S$ if $\langle P \rangle \notin H$ and $L^- \notin S$ else.
- •Case $\emptyset \notin S$: Let Q first perform P, then semi-decide $L^+ \in S$

Theorem (Rice-Myhill-Shapiro): Fix $S \subset 2^{\mathbb{N}}$.

Suppose $L^- \notin S$ and $L^+ \in S$ are semi-decidable.

Then $\mathcal{L}(S) := \{ \langle P \rangle : L(P) \in S \}$ is <u>un</u>decidable.

Oracle WHILE programs

$$P^{\varphi} := (x_j := 0 \mid x_j := x_i \pm 1 \mid P; P \mid x_j := \varphi(x_i) \mid$$

LOOP x_j DO P END \mid WHILE x_j DO P END $)$

Examples:

Fix some arbitrary total $\varphi:\mathbb{N}\to\mathbb{N}$

- $\varphi := \chi_{\mathbb{P}}$ characteristic function of Primality Probl.
- $\varphi := \chi_H$ characteristic function of Halting Problem
- $\varphi := \chi_T$ characteristic function of Totality Problem

$$\chi_{\mathbb{P}} \preccurlyeq \chi_{H} \equiv \chi_{\overline{H}} \preccurlyeq \chi_{T}$$
 (cmp. set cardinalities...)

For $\psi, \phi: \mathbb{N} \to \mathbb{N}$ write $\psi \leqslant \phi$ if there is a WHILE program with oracle ϕ computing ψ .

a) φ computable \Rightarrow so ψ b) $\psi \leqslant \varphi \leqslant \chi \Rightarrow \psi \leqslant \chi$

Higher Halting Problems

$$P^{\varphi} := (x_j := 0 \mid x_j := x_i \pm 1 \mid P ; P \mid x_j := \varphi(x_i) \mid$$

LOOP x_j DO P END \mid WHILE x_j DO P END $)$

Fix some arbitrary total $\varphi:\mathbb{N}\to\mathbb{N}$

$$H^L := \{ \langle P \rangle \in \mathbb{N} : P^L \text{ terminates (on input } \epsilon) \}$$

Lemma: a) H^L is <u>semi</u>-decidable with oracle L

b) but not decidable with oracle $L: H^L \nleq L$

Hierarchy: ... $H^{H^H} \sharp H^H \sharp H$

For $\psi, \phi: \mathbb{N} \to \mathbb{N}$ write $\psi \preccurlyeq \phi$ if there is a WHILE program with oracle ϕ computing ψ .

a) φ computable \Rightarrow so ψ

Identify L with χ_L , $L \subseteq \mathbb{N}$

Semantic Arithmetic Hierarchy

$$P^{\Phi} := (x_j := 0 \mid x_j := x_i \pm 1 \mid P; P \mid x_j)$$

LOOP x_i DO P END \mid WHILE x_i \mid

Fix some arbitrary t

Def:
$$\Delta_1 = \Sigma_0 = \Pi_0 = \text{decidable}$$

$$\Delta_{k+1} = \text{decidable}^{\Sigma_k} = \text{decidable}^{\Pi_k}$$

$$\Sigma_{k+1} = \text{semi-decidable}^{\Sigma_k}$$

$$\Pi_{k+1}$$
 = co-semi-decidable Σ_k

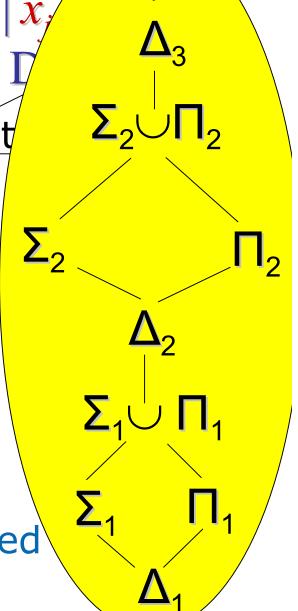
Lemma: a) $\Delta_k = \cos{-\Delta_k}$

b)
$$\Delta_k = \Sigma_k \cap \Pi_k$$

c)
$$\Sigma_k \cup \Pi_k \subseteq \Delta_{k+1}$$

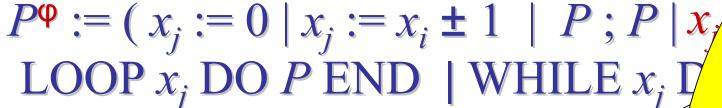
any single fixed

oracle $L \in \prod_k$



Ziegler

Syntactic Arithmetic Hierarchy



Fix some arbitrary t

Def: $\Delta_1 = \Sigma_0 = \Pi_0 = \text{decidable}$

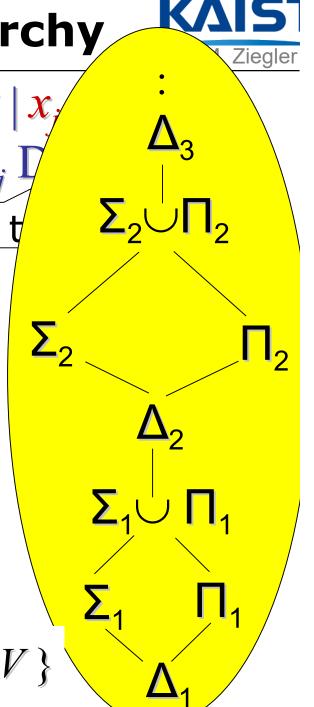
$$\Delta_{k+1} = \text{decidable}^{\Sigma_k} = \text{decidable}^{\Pi_k}$$

$$\Sigma_{k+1} = \text{semi-decidable}^{\Sigma_k}$$

Normalform: $L \in \Sigma_4$

iff, for some decidable $V \subseteq \mathbb{N}$,

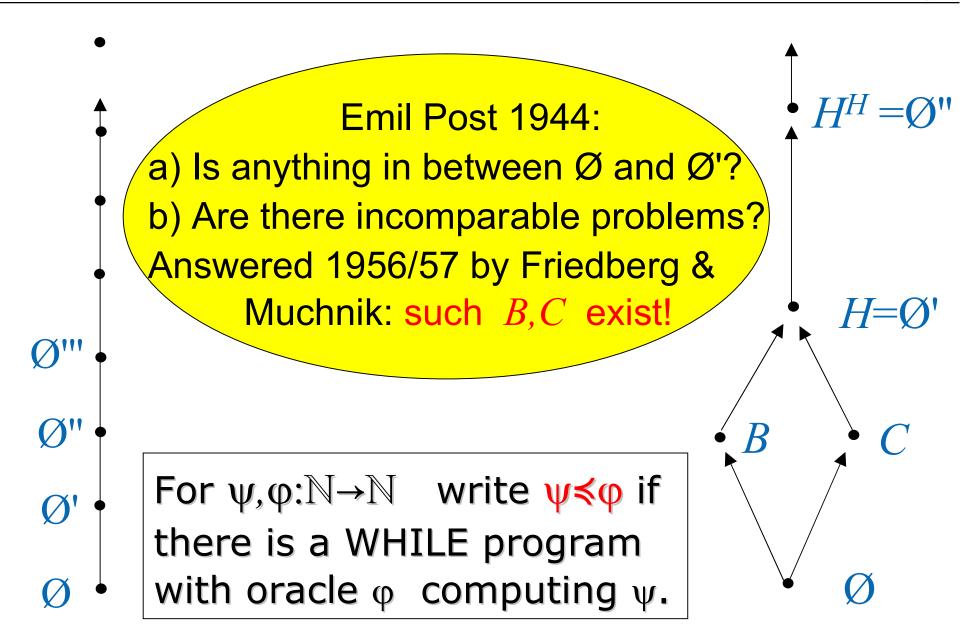
$$L = \{ x \in \mathbb{N} : \exists y \ \forall z \ \exists u \ \forall v : \langle x, y, z, u, v \rangle \in V \}$$



Post's Question

- Decidable problems
- Undecidable N s.t. H is decidable by P^N
- Strictly "more" undecidable than $H: T \equiv H^H$
- Emil Post'44: a) Anything between H, H^H?
- b) Are there incomparable problems?
- That is, do there exist
 - <u>semi-decidable</u> problems *A*, *B* s.t.
 - $\blacksquare A$ is <u>not</u> decidable with oracle B
 - nor is B decidable with oracle A.
- Answered 1956/57 by Friedberg&Muchnik

Partially Ordered Degrees



Priority Diagonalization: Trading with the Devil

You have countably many coins

- Devil takes one of them
- and gives you two new ones,
- Then repeat.

How many coins do you own ultimately?

NONE!

Courtesy of Joel D. Hamkins

Advanced Diagonalization

Proof idea: "Construct" semi-deciable $A,B \subseteq \mathbb{N}$ s.t.

- To each P exists x[P] s.t $x \in A \Leftrightarrow P^B(x)$ terminates
- To each Q exists y[Q] st $y \in B \Leftrightarrow Q^A(y)$ terminates

 $D = \{ \langle P \rangle \mid P(\langle P \rangle) \text{ does } \underline{\text{not}} \text{ terminate } \}$

 $\mathbb{N} \backslash A$ is <u>not</u> *semi*-decidable with oracle B, and $\mathbb{N} \backslash B$ is <u>not</u> *semi*-decidable with oracle A.

Theorem (Friedberg, Muchnik'57): There exist (undecidable but) semi-decidable $A,B \subseteq \mathbb{N}$ s.t. A is undecidable with oracle B, and vice versa.

Two Incomparable Problems

Proof idea: "Construct" semi-deciable $A,B \subseteq \mathbb{N}$ s.t.

- To each P exists x[P] s.t $x \in A \Leftrightarrow P^B(x)$ terminates
- To each Q exists y[Q] st $y \in B \Leftrightarrow Q^A(y)$ terminates
- "Thought experiment": Start with $x,y:=0, A,B:=\emptyset$.
- Enumerate all oracle WHILE programs $P^{?},Q^{?}$.
- If P^B accepts x, set $A:=A\cup\{x\}$; else keep A.
- If Q^A accepts y, set $B:=B\cup\{y\}$; else keep
- Let x := x + 1, y := y + 1

But oracles *A*,*B* change throughout construction, might *later* violate witness conditions

Two Incomparable Problems

Proof idea: "Construct" semi-decidable $A,B \subseteq \mathbb{N}$ s.t.

- To each P exists x[P] s.t $x \in A \Leftrightarrow P^B(x)$ terminates
- To each Q exists y[Q] st $y \in B \Leftrightarrow Q^A(y)$ terminates
- "Thought experiment": Start with $x,y:=0, A,B:=\emptyset$.
- Enumerate all oracle WHILE programs $P^{?},Q^{?}$.
- If P^B accepts x, set $A:=A\cup\{x\}$; else keep A.
- If Q^A accepts y, set $B:=B\cup\{y\}$; else keep B.
- $x := \max\{x, \text{ largest query by } Q^A(y)\} + 1$ $y := \max\{y, \text{ largest query by } P^B(x)\} + 1$

But oracles *A*,*B* change throughout construction, might *later* violate witness conditions

Finite Injury Priority Proof

Proof idea: "Construct" semi-deciable $A,B \subseteq \mathbb{N}$ s.t.

■ To each P exists x[P] s.t $x \in A \Leftrightarrow P^B(x)$ terminates

Idea: Maintain 2 finite lists of 'candidate' witnesses. E.g. (P_1,x_1) , (P_2,x_2) , (P_3,x_3) for A; (Q_1,y_1) , (Q_2,y_2) for B. Call (P,x) active if 'simulation' of $P^B(x)$ is still running. For each N:=0,1,2,...

- •Add (N,x) to list. For active (P,a), increasing in P:
- •If P^B accepts a within $\leq N$ steps, set $A:=A\cup\{a\}$
- $y:=1+\max\{y, \text{ largest oracle query by } P^B \text{ on } a\}$
- •Mark (P,a) inactive. For all (Q,b) with Q>P do •replace (Q,b) with (Q,y++) marked active.
- •Add (N,y) to list. For active (Q,b), increasing in Q:
- •If O^A accepts b within $\leq N$ steps....

Finite Injury Priority Technique

Witness y[P] for " $y \in B \Leftrightarrow Q^A(y)$ stops" changes (injury)

- but only finitely often:
- namely when some P<Q terminates (priority)
- and, once settled, maintains witness condition!
- Both A,B are enumerated, hence semi-decidable.

For each N:=0,1,2,...

- •Add (N,x) to list. For active (P,a), increasing in P:
- ■If P^B accepts a within $\leq N$ steps, set $A:=A\cup\{a\}$
- $y:=1+\max\{y, \text{ largest oracle query by } \overline{P^B} \text{ on } a\}$
- ■Mark (P,a) inactive. For all (Q,b) with Q>P do =replace (Q,b) with (Q,y++) marked active.
- •Add (N,y) to list. For active (Q,b), increasing in Q:
- •If O^A accepts b within ≤N steps. ...

§2 Advanced Computability

- WHILE programs
- UTM Theorem
- Normalform Theorem
- SMN Theorem / Currying (Schönfinkeling)
- Fixedpoint Theorem, Quines
- Rice-Myhill-Shapiro
- Oracle WHILE programs, Higher Halting Problem
- Arithmetic Hierarchy: semantially & syntactically
- Post's Problem / Friedberg&Muchnik's Proof