§6 Competitive Analysis of Online Algorithms

- Motivation: Ski Rental
 - Break-Even Algorithm
 - is 2-competitive; optimality
- Online Paging
 - *Least-Recently Used* is *k*-competitive
 - Least-Frequently Used is not competitive
 - LRU is optimal among deterministic online
- Randomization and expected competitiveness
 - 1.84-competitive randomized Ski Rental

Competitive ratio = online cost / offline cost

Ski Rental Math Quiz Design & Analysis of Algorithms Martin Ziegler

 $L / \min(L,D)$: $L \le D$ 2D-1 / $\min(L,D)$: $L \ge D$

a) Prove: $\leq (2-1/D)$ either case

c) Is
$$\frac{X+D}{\min(X+1,D)} \geq 2$$

for every $X \in \mathbb{N}$?

 $\frac{X+D}{\min(X+1,D)} \ge 2-1/D$ for every $X \in \mathbb{N}$

Online Paging

k pages of *fast* memory, caching $K \gg k$ *slow* pages. For any sequence $\underline{a} = a_1, ..., a_N \in \{1, ..., K\}$ of accesses, minimize the number of cache misses/load/evictions.

Input revealed gradually; *online* algorithm must makes decisions with <u>partial</u> knowledge. Analyze *online* algorithm's <u>output</u> in comparison to optimal *offline* algorithm: **competitive ratio**.

Online Paging: <u>LRU</u>

Theorem: LRU has competitive ratio k = #pages **Proof:** Compare LRU to optimal offline algorithm \mathcal{A} , started with *same* initial cache contents.

 $\begin{array}{c} & & & & \\ a_1 & & & \\ a_2 & & \\ \end{array}$ Divide 1,...N into rounds $1 < t_0 < t_1 < ... < t_M = N$ s.t. LRU incurs precisely k faults in $(t_{m-1}...t_m]$ and [1...k] faults in $[1...t_1]$. In each round, $\geq k+1$ pages get accessed; fault hence \mathcal{A} incurs at least 1 page fault! Whenever a new page is accessed, evict the one Least Recently Used.

Analyze *online* algorithm <u>output</u> in comparison to the *offline* optimum: **competitive ratio**.

Online Paging: <u>LFU</u>

Theorem: LFU has no (finite) competitive ratio!

Proof: Compare LFU to the optimal online algorithm on the following access sequence for K=k+1:

Analyze *online* algorithm <u>output</u> in comparison to the *offline* optimum: **competitive ratio**.

Optimality in Online Paging

Theorem: Every deterministic online algorithm \mathcal{A} has competitive ratio $\geq k = \#$ pages

Proof: Let K > k. Simulate \mathcal{A} on <u>initial</u> access sequence $\underline{a} = (1, 2, ..., k)$. Pigeonhole: choose $\widehat{a_{n+1}} \in \{1, ..., K\}$ <u>not</u>

in \mathcal{A} 's cache after serving (a_1, a_2, \dots, a_n) .

 \mathcal{B} faults only every *k*-th request!

"adversary"

 \mathcal{A} faults on

every request!

Pigeonhole: Omnicient *offline* algorithm \mathcal{B} (can) choose to evict a page <u>not</u> to be accessed in the <u>next</u> k-1 steps.

Analyze *online* algorithm <u>output</u> in comparison to the *offline* optimum: **competitive ratio**.

Randomized Online Algorithm

Design & Analysis of Algorithms Martin Ziegler

Each morning: (i) **Rent** at \$1 for <u>another</u> day or (ii) **buy** <u>once</u> for \$*D*>1

Breakeven is (2–1/*D*)-competitive, and best possible:

Fix <u>any</u> algorithm \mathcal{A} , run on ∞ season, let X=# days it rents before buying. Restart, abort season on day #X+1.

Randomized Ski Rental: Flip a fair coin. **Head:** Breakeven (\approx rent for D days, then buy) **Tail:** Rent for $\frac{2}{3}D$ days, then buy. 1.833

 $L \ge D: \mathbb{E}[\cos t] \approx \frac{1}{2} \cdot (2D) + \frac{1}{2} \cdot (\frac{2}{3} + 1) \cdot D = \frac{11}{6} \cdot D$ $\frac{2}{3}D \le L < D: \mathbb{E}[\cos t] \approx \frac{1}{2} \cdot (L) + \frac{1}{2} \cdot (\frac{2}{3} + 1) \cdot D \le \frac{(\frac{1}{2} + \frac{1}{2} \cdot (\frac{2}{3} + 1)/\frac{2}{3}) \cdot L}{L < \frac{2}{3}D: \mathbb{E}[\cos t] \approx \frac{1}{2} \cdot (L) + \frac{1}{2} \cdot (L) = L$ 1.75

"Randomization can beat an adversary!"

§6 Summary

Design & Analysis of Algorithms Martin Ziegler

- Motivation: Ski Rental
 - Break-Even Algorithm
 - is 2-competitive; optimality
- Online Paging
 - *Least-Recently Used* is *k*-competitive
 - Least-Frequently Used is not competitive
 - LRU is optimal among deterministic online
- Randomization and expected competitiveness
 - 1.84-competitive randomized Ski Rental