§11 Quantum Computing

Design & Analysis of Algorithms Martin Ziegler

- Recap: Experimental Physical Evidence
- Math Background: States and Operators
- Pure vs. Mixed States, Entanglement&EPR
- Qubits and Primitive Gates
- Quantum Circuits and Parallelism
- Quantum Phase Estimation
- Shor's Hybrid Algorithm

Recap: Experimental Physics^D

Design & Analysis of Algorithms Martin Ziegler

And so is *light*!

Robert Millikan "Oil drop" (1909): Electrons are *particles*! Claus Jönsson (1959): And so are *electrons!*

Thomas Young (1801): Light is a *wave!*

Basic Quantum Mechanics

Design & Analysis of Algorithms Martin Ziegler

- NOT Path Integral (Richard Feynman)
- NOT Quantum Field Theory (Dyson, Feynman, Schwinger, Tomonaga)
- NOT *Relativistic* Quantum Mechanics

Math of Quantum Mechanics

Design & Analysis of Algorithms Martin Ziegler

<u>Math</u>

Hilbert Space $\mathcal H$

normal vectors $\psi, \psi' \in \mathcal{H}$

III observable \mathcal{A} , \mathcal{A}' of S

 $\begin{array}{c} \mathbf{IV} \text{ measurement} \\ \text{ of } \mathcal{A} \end{array}$

V time evolution $s(0) \rightarrow s(t)$

Hermit. operator A, A' on \mathcal{H}

eigenvalue a of A

Schrödinger Eq. $i\hbar d/dt \psi(t) = H \psi(t)$ MATHEMATICAL FOUNDATIONS OF QUANTUM MECHANICS

By John von Neumann

translated from the German edition by ROBERT T. BEYER

Math of Newton Mechanics

Design & Analysis of Algorithms Martin Ziegler

Physics

I (isolated) system *S*

II (pure) states s,s' of S

III observable \mathcal{A} , \mathcal{A}' of S

Euclid. phase space \mathbb{R}^{6p}

vectors $\bar{U}, \bar{U} \in \mathbb{R}^{6p}$

projections $A, A': \mathbb{R}^{6p} \rightarrow \mathbb{R}$

value $a = A(\bar{u})$

Newton's Law/Eq. $d/dt \ \overline{U}(t) = \dots$

 $\begin{array}{c} \mathbf{IV} \text{ measurement} \\ \text{ of } \mathcal{A} \end{array}$

V time evolution $s(0) \rightarrow s(t)$

Math of Newton Mechanics

Design & Analysis of Algorithms Martin Ziegler

Physics

I (isolated) system *S*

II (pure) states s,s' of S

III observable \mathcal{A} , \mathcal{A}' of S

Euclid. phase space \mathbb{R}^{6p}

vectors $\bar{U}, \bar{U} \in \mathbb{R}^{6p}$

projections $A, A': \mathbb{R}^{6p} \rightarrow \mathbb{R}$

value $a = A(\bar{u})$

Newton's Law/Eq. $d/dt \ \overline{U}(t) = \dots$

 $\begin{array}{c} \mathbf{IV} \text{ measurement} \\ \text{ of } \mathcal{A} \end{array}$

V time evolution $s(0) \rightarrow s(t)$

Math of Quantum Mechanics of Algorithms

Design & Analysis Martin Ziegler

Math

Hilbert Space \mathcal{H}

normal vectors $\psi, \psi' \in \mathcal{H}$

III observable $\mathcal{A}, \mathcal{A}'$ of S

IV measurement of \mathcal{A}

V time evolution $s(0) \rightarrow s(t)$

Hermit. operator A, A' on \mathcal{H}

> eigenvalue a of A

Schrödinger Eq. $i\hbar d/dt \psi(t) = \boldsymbol{H} \psi(t)$

MATHEMATICAL FOUNDATIONS OF QUANTUM **MECHANICS**

By John von Neumann

translated from the German edition by ROBERT T. BEYER

Axioms of Quantum Mechanics

- **Ia.** To any (isolated) physical system S corresponds a complex Hilbert space \mathcal{H} called the *state space*.
- **Ib.** The state space of a system *S* composed from (connected) sub-systems S_j is the *tensor product* $\mathcal{H} = \bigotimes_j \mathcal{H}_j$ of the state spaces associated with components S_j
- **IIa.** A *pure* state S=S(t) of S at time t corresponds to a *unit* (=norm**1**) vector $\psi = \psi(t) \in \mathcal{H}$.
- **IIb.** A statistical *ensemble* (=mix) of pure states/ vectors S_k/ψ_k with weights $w_k \in [0;1]$ corresponds to a *density* (=pos.semid. trace**1**) *operator* $\rho = \sum_k w_k \cdot |\psi_k\rangle \langle \psi_k|$

Axioms of Quantum Mechanics

Design & Analysis of Algorithms Martin Ziegler

- **III.** Any physical observable \mathcal{A} on S corresponds to a Hermitian operator A on \mathcal{H} .
- **IVa.** When *S* is in *pure* state ψ , measuring \mathcal{A} produces eigenvalue *a* of *A* with **probability** $|\langle \psi_a | \psi \rangle|^2$, where ψ_a is any unit eigenvector of *A* to eigenvalue *a*. **IVa'.** After this measurement, *S* will be in state $\psi'=\psi_a$ **IVb** When *S* is in *mixed* state with density ρ , measuring \mathcal{A} produces eigenvalue *a* with **probability** $\langle \psi_a | \rho \psi_a \rangle$.
- **IVb'.** After this measurement, *S* will be in a state with density $\mathbf{\rho}' = |\psi_a\rangle\langle\psi_a| \mathbf{\rho} |\psi_a\rangle\langle\psi_a|$
- *Density* (=pos.semid. trace**1**) *operator* $\rho = \sum_k w_k |\psi_k\rangle \langle \psi_k |$

Axioms of Quantum Mechanics

Design & Analysis of Algorithms Martin Ziegler

- **III.** A physical observable \mathcal{A} on S corresponds to a Hermitian operator A on \mathcal{H} .
- **IVa.** When *S* is in *pure* state ψ , measuring \mathcal{A} produces eigenvalue *a* of *A* with **probability** $|\langle \psi_a | \psi \rangle|^2$, where ψ_a is any unit eigenvector of *A* to eigenvalue *a*. **IVa'.** After this measurement, *S* will be in state $\psi'=\psi_a$ **IIa.** A *pure* state *s*=*s*(*t*) of *S* at time *t* corresponds
- to a *unit* (=norm**1**) vector $\psi = \psi(t) \in \mathcal{H}$.

H Hamilton operator from observable "*energy*" (**III**) **V.** The time evolution of a *pure* state $\psi(0) \rightarrow \psi(t) \in \mathcal{H}$ is $\psi(t) = U(t) \psi(0)$, $U(t) = e^{-i \int H(t) dt/\hbar}$ unitary

Illustration/Justification

Design & Analysis of Algorithms Martin Ziegler

Ia. To any (isolated) physical system *S* corresponds a complex Hilbert space \mathcal{H} called the *state space*.

Qubit Register

Design & Analysis of Algorithms Martin Ziegler

b) Particle spin: $\mathcal{H}=\mathbb{C}^2$ (qubit), ortho-basis $(0,1) =: |0\rangle$ and $(1,0) =: |1\rangle$ **c)** $\otimes^n \mathbb{C}^2$ (*n* qubits) has complex dimension 2^n with ortho-basis $|0...0\rangle$... $|1...1\rangle$

IVa. When *S* is in *pure* state ψ , measuring *A* produces eigenvalue *a* of *A* with **probability** $|\langle \psi_a | \psi \rangle|^2$, where ψ_a is any unit eigenvector of *A* to eigenvalue *a*. **IVa'.** After this measurement, *S* will be in state $\psi'=\psi_a$

Schrödinger's Cat

Design & Analysis of Algorithms Martin Ziegler

e) Two macroscopic objects? $\mathcal{H}=\mathbb{C}^4$ (double qubit) ortho-basis ($|alive\rangle$, $|dead\rangle$) × ($|decay\rangle$, $|stable\rangle$)

IVa'. After this measurement, *S* will be in state $\psi'=\psi_a$

Quantum Gates: on 1 qubit

Design & Analysis of Algorithms Martin Ziegler

a/b) One qubit state space $\mathcal{H}=\mathbb{C}^2$ basis $(0,1)=:|\mathbf{0}\rangle$ and $(1,0)=:|\mathbf{1}\rangle$ phase P_{φ}

$$= \begin{array}{c|c} 1 & 0 \\ \hline 0 & e^{i\phi} \end{array}$$

 \otimes id $\otimes ... \otimes$ id (n-1)-fold

N 20 1 N 20 1

Quantum gates are *unitary* \Rightarrow *reversible*!

Hadamard Gate: on 1 qubit

Design & Analysis of Algorithms Martin Ziegler

a/b) One qubit state space \mathbb{C}^2 with ortho-basis $|0\rangle$, $|1\rangle$

IVa. When in *pure* state ψ , measuring produces eigenvalue *a* with **probability** $|\langle \psi_a | \psi \rangle|^2$, ψ_a eigenvector

Quantum Gates: on 2 qubits

Design & Analysis of Algorithms Martin Ziegler

d) Two qubits state space $\mathcal{H}=\mathbb{C}^4$ with ortho-basis $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$

Quantum gates are *unitary*

Hadamard on 2 and on *n* qubits of Algorithms Martin Ziegler

c) $\mathcal{H}=\otimes^n \mathbb{C}^2$ (*n* qubits) has complex dimension $N=2^n$ with ortho-basis $|0...0\rangle$... $|1...1\rangle$

Quantum Parallelism

Design & Analysis of Algorithms Martin Ziegler

c) $\mathcal{H}=\otimes^n \mathbb{C}^2$ (*n* qubits) has complex dimension $N=2^n$ with ortho-basis $|0...0\rangle$... $|1...1\rangle$

Quantum Fourier Transform

Design & Analysis of Algorithms Martin Ziegler

c) $\mathcal{H}=\otimes^n \mathbb{C}^2$ (*n* qubits) has complex dimension $N=2^n$ \mathcal{F}_N : $|\operatorname{bin}(K)\rangle \to \sum_{0 \le J < N} \exp(2\pi i J K/N) |\operatorname{bin}(J)\rangle /\sqrt{N}, \quad 0 \le K < N$

quantum circuit

Quantum gates are *unitary*

Quantum Fourier Circuit

c) $\mathcal{H}=\otimes^n \mathbb{C}^2$ (*n* qubits) has complex dimension $N=2^n$

 \mathcal{F}_N : $|\operatorname{bin}(K)\rangle \rightarrow \sum_{0 \le J \le N} \exp(2\pi i J K/N) |\operatorname{bin}(J)\rangle / \sqrt{N}, \quad 0 \le K \le N$

(parallel) of unitary is unitary
(sequential) of unitary is unitary

polynomial size = $O(n^2)$ depth = O(n)

Quantum Phase Estimation Problem orithms

Goal: approximate θ !

Quantum circuits are *unitary*

Peter Shor's Hybrid Algorithm

- **Input:** Composite $X \in \mathbb{N}$.
- **Output:** some nontrivial factor F of X.
- W.I.o.g: X odd, and not a prime power.
- 1. Pick a random number A.
- 2. Use Euclid to calculate F:=gcd(X,A)
- 3. If $F \neq 1$, then F is a nontrivial factor of X done!
- 4. Otherwise, use the **quantum subroutine** to find the multiplicative order R of $A \mod X$
- 5. If *R* is odd, then go back to step 1. (*)
- 6. Calculate $F:=gcd(X, A^{R/2}+1)$. If $F \neq 1$, done!
- 7. Otherwise, go back to step 1. (*)

chartin Ziegler (*) *classical* random analysis/ Number Theory

Design & Analysis

 $R = \min\{K:$

 $A^{K} \equiv 1 \mod X$

Design & AnalysisModular Order and Phase Estimationof Algorithms
Martin ZieglerDef: $U | bin(L) \rangle := | bin(L \cdot A \mod X) \rangle$ for $0 \le L < X$ $M=2^m$

 $\boldsymbol{U}|\operatorname{bin}(L)\rangle := |\operatorname{bin}(L)\rangle$ for $X \leq L \leq M$

where X denotes the m-bit integer to be factored

and $1 \le A \le X$ is an integer parameter coprime to X.

eigenvalues exp(2πiθ), 0≤θ<1

- $U^K = I \iff A^K \equiv 1 \mod X.$ $\theta_K = K/R, \ 0 \le K < R$
- normed eigenvector $\psi_K := \sum_J \exp(-2\pi i J K/R) |bin(A^J)\rangle / \sqrt{R}$

•
$$\sum_{K} \psi_{K} / \sqrt{R} = |\mathbf{0}...\mathbf{01}\rangle$$
 (check!)

• U is unitary

 $\mathbf{R} = \min\{K : A^K \equiv 1 \mod X\}$

quantum subroutine to find multiplicativ. order R of $A \mod X$

Quantum Phase Estimation Problem orithms

Goal: approximate θ !

- normed eigenvector $\psi_K := \sum_J \exp(-2\pi i J K/R) |bin(A^J)\rangle / \sqrt{R}$
- to eigenvalue $\exp(2\pi i\theta)$, $\theta = K/R$ $\sum_{K} \psi_{K}/\sqrt{R} = |0...01\rangle$

Towards Unitary Phase Estimation

Design & Analysis of Algorithms Martin Ziegler

Goal: approximate θ to absolute error $1/2^n$

$sequential \rightarrow$

Quantum Phase Estim. Meta-Circuit gorithms

 $N=2^n$, **Goal:** compute $Y=\lfloor \theta \cdot 2^n \rceil$ with "high" probability $M=2^m$

IVa. When *S* is in *pure* state ψ , measuring \mathcal{A} produces eigenvalue *a* of *A* with **probability** $|\langle \psi_a | \psi \rangle|^2$, where ψ_a is any unit eigenvector of *A* to eigenvalue *a*.

Quantum Phase Estim. *Meta-Circuit porithms N=2ⁿ* **Goal:** compute $\lfloor \theta \cdot 2^n \rfloor$ with "high" probability $V = \sum_{0 \le K \le N} |bin(K)\rangle \langle bin(K)| \otimes U^K$, $|bin(K)\rangle \otimes |\psi\rangle \rightarrow |bin(K)\rangle \otimes |U^K|\psi\rangle$

Measurement yields $Y = \lfloor \theta \cdot 2^n \rfloor$ with probability $|c_Y|^2 \ge 4/\pi^2$

Quantum Phase Estim. *Meta-Circuit* vorithms *N=2ⁿ* **Goal:** compute $\lfloor 0 \cdot 2^n \rfloor$ with "high" probability $V = \sum_{0 \le K < N} |bin(K)\rangle \langle bin(K)| \otimes U^K = \prod_{0 \le k < n} V_{2^k,k}$ controlled where $V_{K,\mathfrak{e}} |x_0...x_{n-1}\rangle \otimes |\psi\rangle := [x_0...x_{n-1}\rangle \otimes (U^{K\cdot x_{\mathfrak{e}}} \psi))$ power

Superposition

Controlled U Operations

Design & Analysis Phase Estim. in Shor's Algorithm of Algorithms Martin Ziegler $N=2^n$ for $0 \leq L \leq X$ $\boldsymbol{U}|\operatorname{bin}(L)\rangle := |\operatorname{bin}(L \cdot A \mod X)\rangle$ $M=2^m$ $U | \operatorname{bin}(L) \rangle := | \operatorname{bin}(L) \rangle$ for $X \leq L \leq M$ where X denotes the *m*-bit integer to be factored and $1 \le A \le X$ is an integer parameter coprime to X. $\Rightarrow U^{2^{k}} | bin(L) \rangle = | bin(L \cdot A^{2^{k}} \mod X) \rangle$ repeated squarifig modular $|0\rangle$ Hsequential \rightarrow $\mathcal{QFT}_{2^n}^ |0\rangle$ H $|0\rangle$ HU unitary

§11 Summary

- Recap: Experimental Physical Evidence
- Math Background: States and Operators
- Pure vs. Mixed States, Entanglement&EPR
- Qubits and Primitive Gates
- Quantum Circuits and Parallelism
- Quantum Phase Estimation
- Shor's Hybrid Algorithm