Distributed Computer Simulations

Inhoe Koo

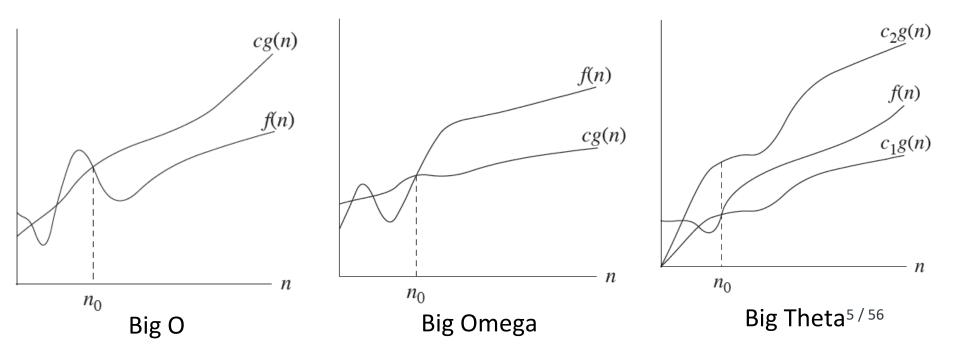
1. Introduction

2. Parallel Random Access Machine

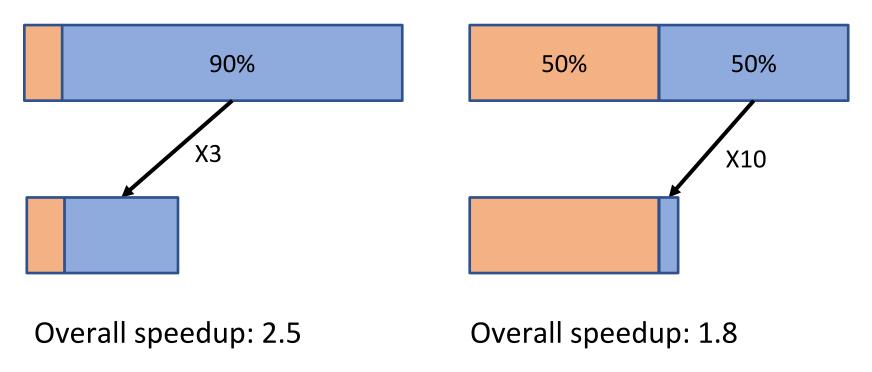
- **3. PRAM Problems**
- **4. Deterministic Simulations**
- **5. Random Simulations**
- 6. Conclusion

1. Introduction

Can MMORPG Scale?

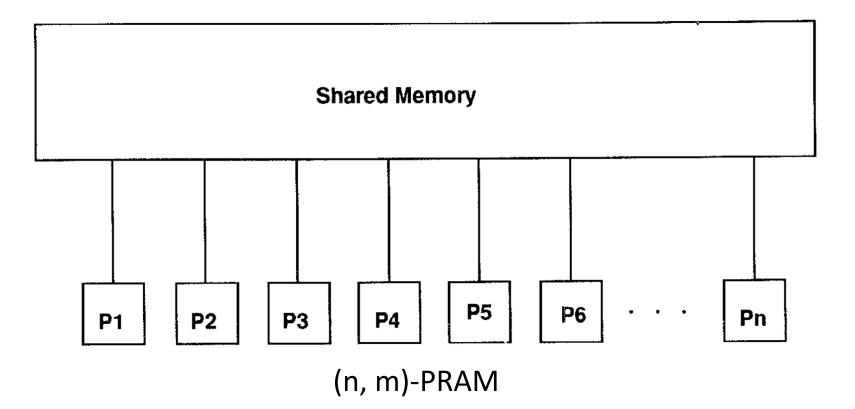

- MMORPG needs scalability
- Using each user computer, parallel execution is possible
- 2 design questions upon parallel algorithm
- 1. Problem has enough parallelism?
- 2. Data sharing fast enough?

Asymptotic Notation


Big O notation: f(x) = O(g(x))

Big Omega notation: $f(x) = \Omega(g(x))$

Big Theta notation: $f(x) = \Theta(g(x))$


• Speedup is mostly defined by how small is the portion of sequentially executed part

2. Parallel Random Access Machine

Parallel Random Access Machine

• Parallel computation model

- Three kinds of PRAM depending on the memory access pattern
- 1. EREW (exclusive read, exclusive write) Only one processor could read or write
- 2. CREW (concurrent read, exclusive write) Only one processor could write, multiple could read
- 3. CRCW (concurrent read, concurrent write) Multiple processor could read or write

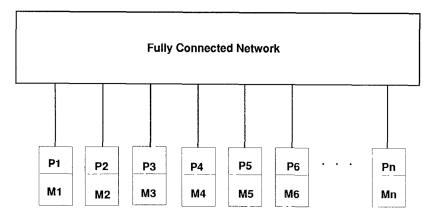
- 4 conflict resolution strategy for CRCW PRAM
- 1. Common CRCW PRAM All values should be identical
- 2. Arbitrary CRCW PRAM The value is chosen arbitrary
- 3. Priority CRCW PRAM

The value is chosen with the highest priority

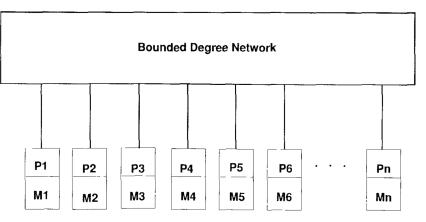
4. Combining CRCW PRAM

Linear combination of all values are written

- Cole's parallel merge sort
- 1. EREW PRAM $O(\log n)$ O(1) time on binary tree like approach O(logn) time on the depth
- 2. CRCW PRAM $O\left(\frac{\log n}{\log \log \frac{2p}{n}}\right)$


(p:number of processor, $2n \le p \le n^2$)

- Maximum finding
- CRCW PRAM O(1)
 n² processors compare every subset of 2 elements and write 1 on one with smaller value. → One with value 0 is maximum


3. PRAM Problems

- Problem exist in order to apply PRAM to realistic machine
- No shared memory shared by numerous processor
 → realistic model used instead
- PRAM simulation problem: amount of slowdown on a simulation of a CRCW PRAM to realistic parallel machine

CRCW PRAM \rightarrow EREW PRAM \rightarrow model parallel computer \rightarrow bounded degree network

model parallel computer

bounded degree network

Subproblems of PRAM Simulation Problem - (2)

- Concurrent access problem
 − CRCW PRAM → EREW PRAM
- Memory management problem
 − EREW PRAM → MPC
- Routing/interconnection problem
 MPC → BDN

- Slowdown : number of additional steps by simulation
 - → T step on CRCW, f(n)T step on realistic parallel machine → f(n) slowdown
- Efficiency: ratio of time according to the number of processors
 → Optimally efficient simulation: ratio is 1

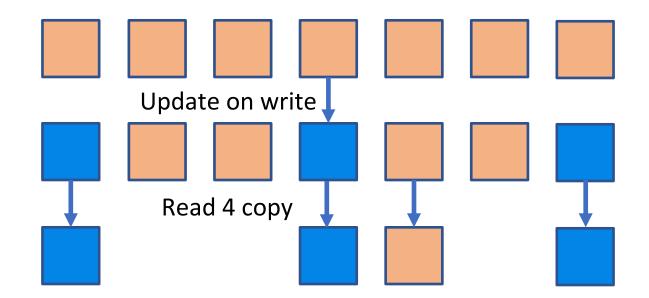
- CRCW PRAM \rightarrow EREW PRAM
- Optimal slowdown algorithm \rightarrow 3 step

1. Sort memory request by (requested memory address, requesting processor) $\Omega(\log n)$ on a EREW PRAM.

2. Handle concurrent access on same memory location

Use binary tree approach $O(\log n)$ to check all concurrent access

3. Multibroadcast for read $O(\log n)$ on a parallel computer


→ Simulating CRCW PRAM on EREW PRAM includes $\Theta(\log n)$ slowdown

This is the end of part 1

4. Deterministic Simulations

Memory Management Problem – (1)

- Simplest solution: Copy every data Read – O(1) Write – O(n)
- More efficient solution: Update only majority of the copied data w/ timestamp

Memory Management Problem – (2)

• Time complexity of updating majority of the copy $\Omega\left(\left(\frac{m}{n}\right)^{\frac{1}{2r}}\right)(r:number \ of \ copies)$ $\left(\log \frac{m}{n}\right)$

$$O(logn)$$
 w/ copy of $\Omega\left(\frac{\log n}{log logn}\right)$

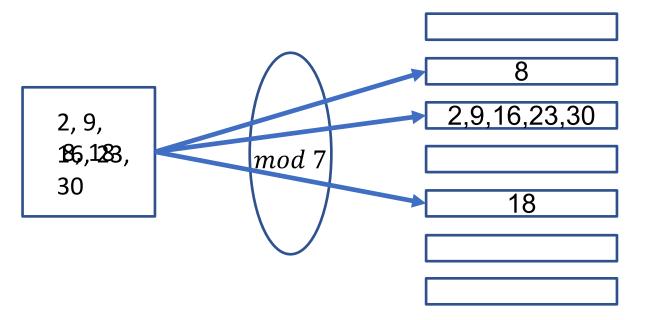
• Optimal slowdown of $O(\frac{\log n}{\log \log n})$ w/ copy of

$$O(\frac{\log m}{\log \log m})$$

- In reality, CPUs are much faster than network
- Bad worst case performance due to hotspot
- Sorting network slowdown of $O(\log n)$

Overall Slowdown

• Concurrent access problem – $\Theta(\log n)$


• Memory management problem – $O\left(\frac{\log n}{\log \log n}\right)$

- Routing/interconnection problem $O(\log n)$
- Memory management problem and routing/interconnection problem not independent
- Total slowdown $O(\frac{\log^2 n}{\log \log n})$

5. Random Simulations

Memory Management Problem

• Use hash function

• Optimal slowdown – $O(log \log n \log^* n)$

- Two-phase random routing send packet to random stopover before original destination
- Slowdown $\Omega(\log n)$ (optimal)

- Concurrent access problem $\Theta(\log n)$
- Memory management problem –
 O(log log n log*n)
- Routing/interconnection problem $\Theta(\log n)$
- Total slowdown $\Theta(\log n)$

- PRAM model
- Types of PRAM
- PRAM simulation problem
- Subproblems of PRAM simulation problem
- Slowdown of $O(\frac{\log^2 n}{\log \log n})$ using deterministic simulation, $\Theta(\log n)$ using random simulation

- Harris, Tim J. "A survey of PRAM simulation techniques." ACM Computing Surveys (CSUR) 26.2 (1994): 187-206.
- Mehlhorn, Kurt, and Uzi Vishkin. "Randomized and deterministic simulations of PRAMs by parallel machines with restricted granularity of parallel memories." Acta Informatica 21.4 (1984): 339-374.
- Cole, Richard. "Parallel merge sort." SIAM Journal on Computing 17.4 (1988): 770-785.
- Big O notation. <u>https://en.wikipedia.org/wiki/Big_O_notation</u>
- PRAM maximum finding algorithm. <u>https://homes.cs.washington.edu/~arvind/cs424/notes/l2-6.pdf</u>