Martin Ziegler

Issued on September 15, 2017

Chansu Park, Donghyun Lim, Dongseong Seon

Due: 14:40, September 22, 2017

CS204

Fall 2017, Assignment #2

Problem 1.

2 + 3 + 3 pts

There are 5 types of tetrominos (if we see flipped tetrominos are the same): I, O, L, S, and T. Show that the checkerboard with size 6×6 cannot be covered using

FIGURE 1. I, O, L, S, T tetrominoes.

FIGURE 2. A familiar 8×8 checkerboard.

- a) T-type tetrominos;
- b) L-type tetrominos;
- c) I-type tetrominos.

Problem 2.

 $2 + 3 + 3 \, pts$

Define a **modulo** operator $\equiv_p (p > 0)$ as: for every integer $a, b, a \equiv_p b$ if there exists an integer c such that a = cp + b. Using this operator, prove followings by finding appropriate cases:

- a) Prove there is no integral solution for $x^2 + y^2 = 1048575$.
- b) Change a) into $x^2 + y^2 + z^2 = 1048575$. Prove still there is no integral solution.
- c) Given a positive integer $n \ge 5$, prove that at lease one of n, n+2, n+4 is not a prime number.

Problem 3.

 $4 + 5 \, pts$

- a) Show that the number of primes is infinite by contradiction.
- b) Show that given $N \ge 2$, there exist a unique k-tuple (p_1, \ldots, p_k) where $p_1 \le p_2 \le \cdots \le p_k$ such that p_i is prime and $N = p_1 p_2 \ldots p_k$ using strong induction.