CS204

Fall 2017, Assignment \#2

Problem 1.

There are 5 types of tetrominos(if we see flipped tetrominos are the same): I, O, L, S, and T. Show that the checkerboard with size 6×6 cannot be covered using

Figure 2. A familiar 8×8 checkerboard.
a) T-type tetrominos;
b) L-type tetrominos;
c) I-type tetrominos.

Problem 2.

Define a modulo operator $\equiv_{p}(p>0)$ as: for every integer $a, b, a \equiv_{p} b$ if there exists an integer c such that $a=c p+b$. Using this operator, prove followings by finding appropriate cases:
a) Prove there is no integral solution for $x^{2}+y^{2}=1048575$.
b) Change a) into $x^{2}+y^{2}+z^{2}=1048575$. Prove still there is no integral solution.
c) Given a positive integer $n \geq 5$, prove that at lease one of $n, n+2, n+4$ is not a prime number.

Problem 3.

$$
4+5 \text { pts }
$$

a) Show that the number of primes is infinite by contradiction.
b) Show that given $N \geq 2$, there exist a unique k-tuple (p_{1}, \ldots, p_{k}) where $p_{1} \leq p_{2} \leq$ $\cdots \leq p_{k}$ such that p_{i} is prime and $N=p_{1} p_{2} \ldots p_{k}$ using strong induction.

