
Martin Ziegler Issued on September 29, 2017

Chansu Park, Donghyun Lim, Dongseong Seon Due: 14:40, October 13, 2017

CS204
Fall 2017, Assignment #4

Problem 1. 5 + 2 pts
Fill out corresponding blocks. Then give your opinion: What is more important between

CPU speed improvement and algorithm time complexity improvement?

Running time(sec)
input size(n) 10−92n 10−3n3 10n log2 n

2
8
16
32
64

Problem 2. 2 + 2 + 2 pts
In Chapter 3.1 Example 6, there is Algorithm 6: Greedy change-making algorithm. It

tries to minimize the number of coins to return the change in greedy sense: given coins for
each type c1 < · · · < cn, use one coin ci to change k satisfying ci ≤ k < ci+1, and re-run the
process with change k − ci until changes becomes 0.

a) Suppose we have infinitely many coins for each type: 100 cents, 50 cents, 10 cents, 5
cents, and 1 cent. Using that algorithm, describe how to change 486 cents.

b) Suppose that now we have infinitely many coins for each type: 120 cents, 100 cents,
20 cents, 5 cents, and 1 cent. Using that algorithm, descrive how to change 327 cents.

c) Does b) gives a minimized number of coins as a solution? If not, give a better solution.

Problem 3. 3 + 2 + 3 + 2 + 1 + 1 pts
Fix N = 2 n for some n ∈ Z+. Your task is to sort an integer array A with size N :

A[0 , . . . ,N − 1 ] in ascending order.

a) Construct a function that takes an integer array arr , integers start ,mid , finish, and
then sort arr [start , . . . , finish − 1 ]. Assume that arr [start , . . . ,mid − 1 ] and
arr [mid , . . . , finish − 1 ] are already sorted in ascending order, and also assume that
change of the parameter arr will be automatically applied to the caller.

b) Now suppose A[0 ,N /4 − 1 ],A[N /4 ,N /2 − 1 ],A[N /2 , 3N /4 − 1 ],A[3N /4 ,N − 1 ]
are already sorted in ascending order. What acts you have to do to get a fully sorted
A? Answer using your function in a).

c) Using the idea of b) and the function constructed in a), describe the algorithm to sort
an unsorted array A, starting from sorting 2-element N/2 arrays. You would have to
use the iterative loop: start from parameter = 2 and double it step by step.

d) The function in a) will compare elements in array at most finish − start times. Count
the upper bound of the number of comparisons to sort A fully and answer using n.

e) Convert the answer in d) using N instead, and then give a time complexity of the
algorithm using big-O notation.

f) Compare the time complexity with bubble sort.

1


