Chansu Park, Donghyun Lim, Dongseong Seon
Due: 14:40, November 10, 2017

CS204

Fall 2017, Assignment \#5

Problem 1.

$1+1+1+2+2 \mathrm{pts}$
How many ways are there, when picking 5 cards (without order) out of a deck of 52 , of getting
a) three of a kind,
b) full house,
c) two pair,
d) straight,
e) flush?

Write your calculation process.
Problem 2.
$1+2+2+3+3$ pts
Suppose that you are a TA of discrete mathematics course and you have to distribute 11 points among 5 problems. Answer how many ways are there and explain why for each cases.
a) If you can distribute 0 points on any problems.
b) If every problem must receive at least 1 point.
c) If in addition to (b), at least one problem should receieve at least 3 points.
d) If in addition to (b), number of points must not decrease from problem to problem. (For example, distributing points like $1+2+3+2+3$ is not allowed.)
e) If two problems should have even points(possibly zero) and other three problems should have odd points.

Problem 3.
$4+5+2+5$ pts
Let $A_{n}:=\left\{f \mid f:\{0,1\}^{n} \rightarrow\{0,1\}\right\}$, and let R_{n} be the relation that we defined in Problem 3 of Assignment 3, which is a partially ordered set as you proved.
From R_{n}, prohibit reflexivity and transitivity to define a new relation S_{n} : that is, for any $f, h \in A_{n},(f, h) \in S_{n}$ if and only if the below two arguments holds:
(i) $f^{-1}(1) \subsetneq h^{-1}(1)$,
(ii) $\nexists g \in A_{n}$ such that $\left\{f^{-1}(1) \subsetneq g^{-1}(1)\right\} \wedge\left\{g^{-1}(1) \subsetneq h^{-1}(1)\right\}$.

Using R_{n} and S_{n}, answer the following:
a) Let $R_{n, g}:=\left\{f \mid(f, g) \in R_{n}\right\}$. By assuming $\left|g^{-1}(1)\right|=m,\left|R_{n, g}\right|=2^{m}$ for any $0 \leq m \leq$ 2^{n}. Explain why it holds, and use it to calculate $\left|R_{n}\right|$.
b) Let $G_{n, m}:=\left\{f\left|f \in A_{n},\left|f^{-1}(1)\right|=m\right\}\right.$ for $0 \leq m \leq 2^{n}$. For $1 \leq m \leq 2^{n}$, represent $C_{n, m}:=\left|\left(G_{n, m-1} \times G_{n, m}\right) \cap S_{n}\right|$ as a function of n and m. You have to show how to count the elements of $\left(G_{n, m-1} \times G_{n, m}\right) \cap S_{n}$ to get a full credit.
c) Calculate $C_{2, m}$ for all $1 \leq m \leq 4$ to obtain what is $\left|S_{2}\right|$.
d) Let $N:=2^{n}$. Prove that $\left|S_{n}\right|=\frac{N 2^{N}}{2}$ using the result of b) and properties of binomial coefficient.

Problem 4.

$$
3+1+4 \text { pts }
$$

Suppose that there are n coins and k persons. i th person takes c_{i} coins, but unfortunately, whenever $i<j$, i th person cannot take coins more than j th person takes. Some people even may not take any coins. After they took coins, no coins are remaining. (For example, if there were 10 coins and 3 people, $\left(c_{1}, c_{2}, c_{3}\right)=(2,4,4)$ is valid. But $\left(c_{1}, c_{2}, c_{3}\right)=(2,5,3)$ or $(2,3,3)$ is invalid.
a) Let $D_{n, k}$ be the number of ways to take coins. Represent $D_{n, k+1}$ as a recurrence relation using $D_{?, k}$ family.
b) Calculate $D_{n, 2}$ and explain why.
c) Calculate $D_{n, 3}$ and explain why. Don't use ceiling nor floor functions in your final answer. Instead, divide the case to represent you answer for each n.
Problem 5.
$1+3+2+2$ pts
Recall the Karatsuba's algorithm from the lecture: Consider two polynomials of degree $n, A(x):=A_{0}(x)+A_{1}(x) x^{\frac{n}{2}}$ and $B(x):=B_{0}(x)+B_{1}(x) x^{\frac{n}{2}}$. When you use multiplication 3 times calculating $c_{0}(x):=A_{0}(x) B_{0}(x), c_{1}(x):=\left(A_{0}(x)+A_{1}(x)\right)\left(B_{0}(x)+B_{1}(x)\right)$ and $c_{2}(x):=$ $A_{1}(x) B_{1}(x)$, you can calculate each coefficient of $A(x) B(x):=C_{0}(x)+C_{1}(x) x^{\frac{n}{2}}+C_{2}(x) x^{n}$ only by linear combination of $c_{0}(x), c_{1}(x), c_{2}(x)$.
a) Note that $A(x) B(x)=\left(A_{0}(x)+A_{1}(x) x^{\frac{n}{2}}\right)\left(B_{0}(x)+B_{1}(x) x^{\frac{n}{2}}\right)=A_{0}(x) B_{0}(x)+\left(A_{1}(x) B_{0}(x)+\right.$ $\left.A_{0}(x) B_{1}(x)\right) x^{\frac{n}{2}}+A_{1}(x) B_{1}(x) x^{n}$. Thus it is easy to see that $C_{0}(x)=c_{0}(x)$ and $C_{2}(x)=c_{2}(x)$. Verify that $\left(A_{1}(x) B_{0}(x)+A_{0}(x) B_{1}(x)\right)=C_{1}(x)=c_{1}(x)-c_{0}(x)-c_{2}(x)$.
b) Now let's divide $A(x)$ and $B(x)$ into three pieces. Also for the sake of simplicity, let $n=3 k$. Redefine $A(x):=A_{0}(x)+A_{1}(x) x^{k}+A_{2}(x) x^{2 k}$ and $B(x):=B_{0}(x)+B_{1}(x) x^{k}+$ $B_{2}(x) x^{2 k}$. Let $A(x) B(x)=C_{0}(x)+C_{1}(x) x^{k}+\cdots C_{4}(x) x^{4 k}$ and

$$
\begin{aligned}
& c_{0}(x)=A_{0}(x) B_{0}(x) \\
& c_{1}(x)=\left(A_{0}(x)+A_{1}(x)+A_{2}(x)\right)\left(B_{0}(x)+B_{1}(x)+B_{2}(x)\right) \\
& c_{-1}(x)=\left(A_{0}(x)-A_{1}(x)+A_{2}(x)\right)\left(B_{0}(x)-B_{1}(x)+B_{2}(x)\right) \\
& c_{-2}(x)=\left(A_{0}(x)-2 A_{1}(x)+4 A_{2}(x)\right)\left(B_{0}(x)-2 B_{1}(x)+4 B_{2}(x)\right) \\
& c_{\infty}(x)=A_{2}(x) B_{2}(x)
\end{aligned}
$$

Verify that $A_{1}(x) B_{0}(x)+A_{0}(x) B_{1}(x)=C_{1}(x)=\frac{1}{2} c_{0}(x)+\frac{1}{3} c_{1}(x)-c_{-1}(x)+\frac{1}{6} c_{-2}(x)-$ $2 c_{\infty}(x)$.
c) Similar to (b), other coefficients, such as $C_{0}(x), C_{2}(x), \cdots$ can be expressed as a linear combination of $c_{-2}, \cdots, c_{1}, c_{\infty}$. Embrace that fact and derive a recurrence relation on $f(n)$, which denotes the number of operations to calculate $A(x) B(x)$ in this new method.
d) Solve the recurrence relation in (c).

