Martin Ziegler

Issued on October 27, 2017

Due: 14:40, November 10, 2017

CS204

Fall 2017, Assignment #5

Problem 1.

1 + 1 + 1 + 2 + 2 pts

How many ways are there, when picking 5 cards (without order) out of a deck of 52, of getting $% \left(1-\frac{1}{2}\right) =0$

a) three of a kind,

Chansu Park, Donghyun Lim, Dongseong Seon

- b) full house,
- c) two pair,
- d) straight,
- e) flush?

Write your calculation process.

Problem 2.

1 + 2 + 2 + 3 + 3 pts

Suppose that you are a TA of discrete mathematics course and you have to distribute 11 points among 5 problems. Answer how many ways are there and explain why for each cases.

- a) If you can distribute 0 points on any problems.
- b) If every problem must receive at least 1 point.
- c) If in addition to (b), at least one problem should receive at least 3 points.
- d) If in addition to (b), number of points must not decrease from problem to problem. (For example, distributing points like 1 + 2 + 3 + 2 + 3 is not allowed.)
- e) If two problems should have even points(possibly zero) and other three problems should have odd points.

Problem 3.

 $4 + 5 + 2 + 5 \, pts$

Let $A_n := \{f | f : \{0, 1\}^n \to \{0, 1\}\}$, and let R_n be the relation that we defined in Problem 3 of Assignment 3, which is a partially ordered set as you proved.

From R_n , prohibit reflexivity and transitivity to define a new relation S_n : that is, for any $f, h \in A_n, (f, h) \in S_n$ if and only if the below two arguments holds:

(i)
$$f^{-1}(1) \subsetneq h^{-1}(1)$$
,

(ii) $\nexists g \in A_n$ such that $\{f^{-1}(1) \subsetneq g^{-1}(1)\} \land \{g^{-1}(1) \subsetneq h^{-1}(1)\}.$

Using R_n and S_n , answer the following:

- a) Let $R_{n,g} := \{f | (f,g) \in R_n\}$. By assuming $|g^{-1}(1)| = m$, $|R_{n,g}| = 2^m$ for any $0 \le m \le 2^n$. Explain why it holds, and use it to calculate $|R_n|$.
- b) Let $G_{n,m} := \{f | f \in A_n, |f^{-1}(1)| = m\}$ for $0 \le m \le 2^n$. For $1 \le m \le 2^n$, represent $C_{n,m} := |(G_{n,m-1} \times G_{n,m}) \cap S_n|$ as a function of n and m. You have to show how to count the elements of $(G_{n,m-1} \times G_{n,m}) \cap S_n$ to get a full credit.
- c) Calculate $C_{2,m}$ for all $1 \le m \le 4$ to obtain what is $|S_2|$.
- d) Let $N := 2^n$. Prove that $|S_n| = \frac{N2^N}{2}$ using the result of b) and properties of binomial coefficient.

Problem 4.

 $\mathbf{2}$

 $3 + 1 + 4 \, pts$

Suppose that there are *n* coins and *k* persons. *i*th person takes c_i coins, but unfortunately, whenever i < j, *i*th person cannot take coins more than *j*th person takes. Some people even may not take any coins. After they took coins, no coins are remaining. (For example, if there were 10 coins and 3 people, $(c_1, c_2, c_3) = (2, 4, 4)$ is valid. But $(c_1, c_2, c_3) = (2, 5, 3)$ or (2, 3, 3) is invalid.

- a) Let $D_{n,k}$ be the number of ways to take coins. Represent $D_{n,k+1}$ as a recurrence relation using $D_{?,k}$ family.
- b) Calculate $D_{n,2}$ and explain why.
- c) Calculate $D_{n,3}$ and explain why. Don't use **ceiling** nor **floor** functions in your final answer. Instead, divide the case to represent you answer for each n.

Problem 5.

1 + 3 + 2 + 2 pts

Recall the Karatsuba's algorithm from the lecture: Consider two polynomials of degree $n, A(x) := A_0(x) + A_1(x)x^{\frac{n}{2}}$ and $B(x) := B_0(x) + B_1(x)x^{\frac{n}{2}}$. When you use multiplication 3 times calculating $c_0(x) := A_0(x)B_0(x), c_1(x) := (A_0(x) + A_1(x))(B_0(x) + B_1(x))$ and $c_2(x) := A_1(x)B_1(x)$, you can calculate each coefficient of $A(x)B(x) := C_0(x) + C_1(x)x^{\frac{n}{2}} + C_2(x)x^n$ only by linear combination of $c_0(x), c_1(x), c_2(x)$.

- a) Note that $A(x)B(x) = (A_0(x) + A_1(x)x^{\frac{n}{2}})(B_0(x) + B_1(x)x^{\frac{n}{2}}) = A_0(x)B_0(x) + (A_1(x)B_0(x) + A_0(x)B_1(x))x^{\frac{n}{2}} + A_1(x)B_1(x)x^n$. Thus it is easy to see that $C_0(x) = c_0(x)$ and $C_2(x) = c_2(x)$. Verify that $(A_1(x)B_0(x) + A_0(x)B_1(x)) = C_1(x) = c_1(x) c_0(x) c_2(x)$.
- b) Now let's divide A(x) and B(x) into three pieces. Also for the sake of simplicity, let n = 3k. Redefine $A(x) := A_0(x) + A_1(x)x^k + A_2(x)x^{2k}$ and $B(x) := B_0(x) + B_1(x)x^k + B_2(x)x^{2k}$. Let $A(x)B(x) = C_0(x) + C_1(x)x^k + \cdots + C_4(x)x^{4k}$ and

$$c_0(x) = A_0(x)B_0(x)$$

$$c_1(x) = (A_0(x) + A_1(x) + A_2(x))(B_0(x) + B_1(x) + B_2(x))$$

$$c_{-1}(x) = (A_0(x) - A_1(x) + A_2(x))(B_0(x) - B_1(x) + B_2(x))$$

$$c_{-2}(x) = (A_0(x) - 2A_1(x) + 4A_2(x))(B_0(x) - 2B_1(x) + 4B_2(x))$$

$$c_{\infty}(x) = A_2(x)B_2(x)$$

Verify that $A_1(x)B_0(x) + A_0(x)B_1(x) = C_1(x) = \frac{1}{2}c_0(x) + \frac{1}{3}c_1(x) - c_{-1}(x) + \frac{1}{6}c_{-2}(x) - 2c_{\infty}(x)$.

- c) Similar to (b), other coefficients, such as $C_0(x), C_2(x), \cdots$ can be expressed as a linear combination of $c_{-2}, \cdots, c_1, c_{\infty}$. Embrace that fact and derive a recurrence relation on f(n), which denotes the number of operations to calculate A(x)B(x) in this new method.
- d) Solve the recurrence relation in (c).