Chansu Park, Donghyun Lim, Dongseong Seon
Due: 14:40, November 24, 2017

CS204

Fall 2017, Assignment \#7

Problem 1.
Use mathematical induction to prove the following item:
Suppose that there is a real sequence $\left\{a_{n}\right\}$ satisfying $a_{i+j} \leq a_{i}+a_{j}$ for all $i, j \in \mathbb{Z}^{+}$.
Prove that $\sum_{i=1}^{n} \frac{a_{i}}{i} \geq a_{n}$ for all $n \in \mathbb{Z}^{+}$.
Hint: Use $a_{1}+\cdots+a_{n}$ in your proof.

Problem 2.

$$
3+6 \mathrm{pts}
$$

The given function $M: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$is defined using the rule

$$
M(n):= \begin{cases}n-10 & (n \geq 101) \\ M(M(n+11)) & (n \leq 100)\end{cases}
$$

for all positive integers n.
(a) Calculate $M(107), M(101), M(89), M(78)$.
(b) Write and use a computer program (Language: $\mathrm{C} / \mathrm{C}++/$ Python) to verify that M is totally defined, and list its values for all $n \leq 100$. Verify in this problem means: show that your program which simulates given recursive function not only always terminates but also return a positive integer always. You should print or attach your source code in your hard-copy submission as well as your result.

Problem 3.

$$
1+3+2 \mathrm{pts}
$$

Recall the definition of the fibonacci number:

$$
F_{0}=0, F_{1}=1, F_{n+2}=F_{n+1}+F_{n} \forall n \in \mathbb{N} .
$$

In the above case, we calculated F_{n} only for non-negative integers n. But, why not for negative integers?
Move F_{n+1} to the left side from the given recurrence relation to obtain $f_{n}=F_{n+2}-F_{n+1}$ for all $n \in \mathbb{Z} \backslash \mathbb{N}$.
(a) Manually calculate F_{n} for $n=-1,-2,-3,-4$.
(a) Prove that $F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{\sqrt{5}-1}{2}\right)^{-n}-\left(-\frac{\sqrt{5}+1}{2}\right)^{-n}\right)$ for $n \in \mathbb{Z} \backslash \mathbb{N}$ by induction.
(b) Since \mathbb{Z} has no least element, it seems that we cannot use the induction to calculate the whole sequence $\left\{F_{n}\right\}_{n \in \mathbb{Z}}$. However, we did. Then what trick is used here? Answer according to the domain we concerned.

Problem 4.
There is a weird recursively defined sequence called Hofstadter Sequence. It is defined as:

$$
F(n)=\left\{\begin{array}{ll}
1 & (n=0) \\
n-M(F(n-1)) & (n \geq 1)
\end{array}, \quad M(n)= \begin{cases}0 & (n=0) \\
n-F(M(n-1)) & (n \geq 1)\end{cases}\right.
$$

For small $n, F(n)$ differs from $M(n)$ frequently, but the case $F(n) \neq M(n)$ occurs less as n gets bigger. Find first eight integers $n_{1}<\cdots<n_{8}$ s.t. $F\left(n_{i}\right) \neq M\left(n_{i}\right)$.

