Dongseong Seon, Hyunwoo Lee, Ivan Koswara, Seungwoo Schin

CS204

Fall 2018, Homework #4

Problem 1.

 $0.3 \times 20 + 2 \times 2 pts$

Fill the table with \checkmark or \checkmark . Explain your answers for item b) and d) if your surname starts from A-M. Explain c) and e) otherwise.

- a) The binary relation = on \mathbb{N}
- b) The binary relation \subseteq on $\mathcal{P}(\mathbb{N})$
- c) The binary relation $R = \{(r_1, r_2) \in \mathbb{R}^2 \mid |r_1 r_2| < 0.001\}$ on \mathbb{R}
- d) The binary relation R on $\{a, b, c, d\}$ represented by the matrix

$$M_R = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

e) The binary relation R on $\{a, b, c, d\}$ represented by the directed graph

	reflexive	symmetric	antisymmetric	transitive
a				
b				
c				
d				
е				

Problem 2.

2 + 6 + 2 pts

The binary relation R is defined on the set of functions from \mathbb{Z}^+ to \mathbb{Z}^+ . For any functions f, g from \mathbb{Z}^+ to \mathbb{Z}^+ , $(f, g) \in R \Leftrightarrow f = \tilde{\Theta}(g) \Leftrightarrow \exists c \{(\lim_{n \to \infty} \frac{f(n)}{g(n)} = c) \land (0 < c < \infty)\}.$

- a) Prove that for any $f: \mathbb{Z}^+ \to \mathbb{Z}^+$, $f = \tilde{\Theta}(kf)$ where $k \in \mathbb{Z}^+$.
- b) Prove that R is an equivalence relation.
- c) Prove or disprove that $[n^2 n + 1]_R = [n^2]_R$.

Problem 3.

4 + 6 pts

a) Let $A := [0,1)^2 \subseteq \mathbb{R}^2$. Prove that the poset (A, \preccurlyeq) with the partial order $\preccurlyeq := \{((a,b),(c,d)) \in A \times A \mid a \leq c \land b \leq d\}$ has no maximal element.

b) Construct	ements.	S.		