Martin Ziegler, Svetlana Selivanova

Dongseong Seon, Hyunwoo Lee, Ivan Koswara, Seungwoo Schin

CS204

Fall 2018, Homework #11

 $3+2+3+2 \ pts$

Prove the followings. Here the definition of tree is connected graph without cycles.

a) Every tree is a bipartite graph.

- b) Trees with n vertices have (n-1) edges.
- c) Connected graph with n vertices and (n-1) edges is a tree.

d) Adding an edge to a tree makes it have at least one cycle (i.e. it is not a tree anymore).

Problem 2.

Problem 1.

2+2+3+3 pts

Recall the binomial tree from the lecture. Similarly, let's define trinomial tree(denoted by T_k) recursively. Let T_0 to be a rooted tree with one node(the root), and T_k to be a rooted tree with three T_{k-1} combined, by attaching two T_{k-1} s as a child of the root of one T_{k-1} .

- a) Draw T_2 .
- b) Give a formula for the height of T_k . Explain.
- c) Give a formula for the number of nodes of T_k . Explain.
- d) Give a formula for the degree of the root of T_k . Explain.

Total 20 pts