LOOP programs

- *P* is a LOOP program, $i, j \in \mathbb{N}$
- These are all LOOP programs:
 - $x_j \coloneqq 0$
 - $x_i \coloneqq x_j + 1$
 - *P*;*P*
 - LOOP x_j DO P END

- Inputs are $x_1, x_2, ..., x_k$; remaining variables are 0
- Output is x_0
- LOOP x_j DO P END
 - *P* is executed x_j times
 - x_j may not be changed in P

LOOP: Assignment and Decrement

•
$$x_j \coloneqq x_i$$
 • $x_j \coloneqq \max\{0, x_i - 1\}$

 $x_j \coloneqq 0;$ LOOP x_i DO $x_j \coloneqq x_j + 1$ END

$$x_{j} \coloneqq 0;$$

$$x_{k} \coloneqq 0;$$

$$LOOP \ x_{i} \ DO$$

$$x_{j} \coloneqq x_{k};$$

$$x_{k} \coloneqq x_{k} + 1$$

END

LOOP: Addition and Multiplication

•
$$x_k \coloneqq x_i + x_j$$
 • $x_k \coloneqq x_i \cdot x_j$

 $x_k \coloneqq x_i;$ LOOP x_j DO $x_k \coloneqq x_k + 1$ END

$$x_k \coloneqq 0;$$

LOOP x_j DO
 $x_k \coloneqq x_k + x_i$
END

LOOP: If-zero IF $x_i \neq 0$ THEN \boldsymbol{P} ELSE Q **END**

 $\mathbf{x}_{\mathbf{k}} \coloneqq 0;$ LOOP x_j DO $x_k \coloneqq 1$ END; $x_l \coloneqq 1;$ LOOP x_k DO *P*; $x_l \coloneqq 0$ END; LOOP x_l DO Q END

Ackermann function

- A(0,n) = n+2
- A(m + 1, 0) = 1
- A(m + 1, n + 1) = A(m, A(m + 1, n))
- A(0,n) = 2 + (n+1) 1
- A(1, n) = 2(n + 1) 1
- $A(2,n) = 2^{n+1} 1$
- $A(3,n) = 2^{2^{\cdot 2^{\cdot 2^{-1}}}} 1$ with n + 1 levels

Increasing the first argument by 1 is much larger than any "small" change to the second argument

- Lemma: If LOOP program has input $x_1, x_2, ..., x_k$ and the program takes t steps, then the output is at most $t + \max x_i$
 - The only instruction that increases a value is $x_i \coloneqq x_j + 1$
 - This increases the maximum of all variables by at most 1 per step
 - Output is a variable

- Theorem: For any LOOP program *P*, there exists natural m = m(P) such that if given input $x_1, x_2, ..., x_k$, *P* will halt in $\leq A(m, n)$ steps, where $n = \max\{2, x_1, x_2, ..., x_k\}$
 - *m* only depends on *P*, not input $x_1, x_2, ..., x_k$
- Corollary: Any LOOP program halts
- Corollary: LOOP program cannot compute f(n) = A(n, n)

- Claim: take $m = 3 \times$ number of lines
 - $x_i \coloneqq 0$ and $x_i \coloneqq x_j + 1$ are each 1 line
 - P_1 ; P_2 has the sum of numbers of lines of P_1 and P_2
 - LOOP x_i DO P END has 1 more line than P
- Structural induction: if *P* is in the form...
- $x_j \coloneqq 0$ and $x_j \coloneqq x_i + 1$: trivially $1 \le A(3, n)$ step

- *P*₁; *P*₂: induct
- P_1 has ℓ_1 lines, is done in $\leq A(3\ell_1, n)$ steps
- P_2 has ℓ_2 lines, has maximum input $\leq n + A(3\ell_1, n)$
- P_2 is done in $\leq A(3\ell_2, n + A(3\ell_1, n)) \leq A(3\ell_2, A(3\ell_1 + 1, n))$ steps
- $m = 3(\ell_1 + \ell_2)$, so $3\ell_1, 3\ell_2 \le m 3$
- P_1 ; P_2 is done in $\leq A(3\ell_1, n) + A(3\ell_2, A(3\ell_1 + 1, n))$ steps
- $\leq A(m-3,n) + A(m-3,A(m-2,n))$
- $\bullet \leq A(m-3,n) + A(m-2,n+1)$
- $\leq 2 A(m-2,n+1) \leq A(m,n)$

- LOOP x_j DO P' END
- *P'* has ℓ' lines, is done in $\leq A(3\ell', n)$ steps
- P' is run x_i times
 - First iteration $\leq A(3\ell', n) \leq A(3\ell' + 1, n)$ steps
 - Second iteration $\leq A(3\ell', n + A(3\ell' + 1, n)) \leq A(3\ell' + 1, n + 2)$ steps
 - Third iteration $\leq A(3\ell', n + A(3\ell' + 1, n) + A(3\ell' + 1, n + 2)) \leq A(3\ell' + 1, n + 4)$ steps
 - ...
 - x_j -th iteration takes $\leq A(3\ell' + 1, n + 2x_j 2)$ steps
- Total $\leq \sum_{k=0}^{x_j-1} A(3\ell'+1, n+2k)$ steps

- LOOP x_j DO P' END, assume P' takes $\leq A(3\ell', n)$ time
- Total $\leq \sum_{k=0}^{x_j-1} A(3\ell'+1, n+2k)$ steps
- $x_j \le n$: total $\le n \cdot A(3\ell' + 1, 3n)$ steps
- $\bullet \le A(3\ell' + 2, 3n) \le A(3\ell' + 3, n) = A(m, n)$

- Corollary: LOOP program cannot compute f(n) = A(n, n)
- If there is such program *P*, it has m = m(P) so *P* halts in $\leq A(m, n)$ steps
- Give input n = m + 2
- *P* halts in $\leq A(m, m + 2)$ steps
- Maximum output m + 2 + A(m, m + 2) < A(m + 2, m + 2)