LOOP programs

- \(P \) is a LOOP program, \(i, j \in \mathbb{N} \)
- These are all LOOP programs:
 - \(x_j := 0 \)
 - \(x_i := x_j + 1 \)
 - \(P; P \)
 - LOOP \(x_j \) DO \(P \) END

- Inputs are \(x_1, x_2, ..., x_k \);
 remaining variables are 0
- Output is \(x_0 \)
- LOOP \(x_j \) DO \(P \) END
 - \(P \) is executed \(x_j \) times
 - \(x_j \) may not be changed in \(P \)
LOOP: Assignment and Decrement

• \(x_j := x_i \)

\[
\begin{align*}
x_j & := 0; \\
& \text{LOOP } x_i \text{ DO} \\
& \quad x_j := x_j + 1 \\
& \text{END}
\end{align*}
\]

• \(x_j := \max\{0, x_i - 1\} \)

\[
\begin{align*}
x_j & := 0; \\
x_k & := 0; \\
& \text{LOOP } x_i \text{ DO} \\
& \quad x_j := x_k; \\
& \quad x_k := x_k + 1 \\
& \text{END}
\end{align*}
\]
LOOP: Addition and Multiplication

• $x_k := x_i + x_j$

\[x_k := x_i; \]
\[\text{LOOP } x_j \text{ DO} \]
\[\quad x_k := x_k + 1 \]
\[\text{END} \]

• $x_k := x_i \cdot x_j$

\[x_k := 0; \]
\[\text{LOOP } x_j \text{ DO} \]
\[\quad x_k := x_k + x_i \]
\[\text{END} \]
LOOP: If-zero

IF $x_j \neq 0$ THEN
 P
ELSE
 Q
END

$x_k := 0$;
LOOP x_j DO
 $x_k := 1$
END;
$x_l := 1$;
LOOP x_k DO
 P
 $x_l := 0$
END;
LOOP x_l DO
 Q
END
Ackermann function

• $A(0, n) = n + 2$
• $A(m + 1, 0) = 1$
• $A(m + 1, n + 1) = A(m, A(m + 1, n))$

• $A(0, n) = 2 + (n + 1) - 1$
• $A(1, n) = 2(n + 1) - 1$
• $A(2, n) = 2^{n+1} - 1$
• $A(3, n) = 2^{2^{\cdot^{\cdot^{2}}}} - 1$ with $n + 1$ levels

Increasing the first argument by 1 is much larger than any "small" change to the second argument.
Halting problem for LOOP programs is decidable

• Lemma: If LOOP program has input x_1, x_2, \ldots, x_k and the program takes t steps, then the output is at most $t + \max x_i$
 • The only instruction that increases a value is $x_i := x_j + 1$
 • This increases the maximum of all variables by at most 1 per step
 • Output is a variable
Halting problem for LOOP programs is decidable

• Theorem: For any LOOP program P, there exists natural $m = m(P)$ such that if given input $x_1, x_2, ..., x_k$, P will halt in $\leq A(m, n)$ steps, where $n = \max\{2, x_1, x_2, ..., x_k\}$
 • m only depends on P, not input $x_1, x_2, ..., x_k$

• Corollary: Any LOOP program halts

• Corollary: LOOP program cannot compute $f(n) = A(n, n)$
Halting problem for LOOP programs is decidable

• Claim: take $m = 3 \times \text{number of lines}$
 • $x_i := 0$ and $x_i := x_j + 1$ are each 1 line
 • $P_1; P_2$ has the sum of numbers of lines of P_1 and P_2
 • LOOP x_i DO P END has 1 more line than P

• Structural induction: if P is in the form...

• $x_j := 0$ and $x_j := x_i + 1$: trivially $1 \leq A(3, n)$ step
Halting problem for LOOP programs is decidable

- \(P_1, P_2 \): induct
- \(P_1 \) has \(\ell_1 \) lines, is done in \(\leq A(3\ell_1, n) \) steps
- \(P_2 \) has \(\ell_2 \) lines, has maximum input \(\leq n + A(3\ell_1, n) \)
- \(P_2 \) is done in \(\leq A(3\ell_2, n + A(3\ell_1, n)) \leq A(3\ell_2, A(3\ell_1 + 1, n)) \) steps
- \(m = 3(\ell_1 + \ell_2) \), so \(3\ell_1, 3\ell_2 \leq m - 3 \)
- \(P_1, P_2 \) is done in \(\leq A(3\ell_1, n) + A(3\ell_2, A(3\ell_1 + 1, n)) \) steps
- \(\leq A(m - 3, n) + A(m - 3, A(m - 2, n)) \)
- \(\leq A(m - 3, n) + A(m - 2, n + 1) \)
- \(\leq 2 A(m - 2, n + 1) \leq A(m, n) \)
Halting problem for LOOP programs is decidable

• LOOP x_j DO P' END

• P' has ℓ' lines, is done in $\leq A(3\ell', n)$ steps

• P' is run x_j times
 • First iteration $\leq A(3\ell', n) \leq A(3\ell' + 1, n)$ steps
 • Second iteration $\leq A(3\ell', n + A(3\ell' + 1, n)) \leq A(3\ell' + 1, n + 2)$ steps
 • Third iteration $\leq A(3\ell', n + A(3\ell' + 1, n) + A(3\ell' + 1, n + 2)) \leq A(3\ell' + 1, n + 4)$ steps
 • ...
 • x_j-th iteration takes $\leq A(3\ell' + 1, n + 2x_j - 2)$ steps

• Total $\leq \sum_{k=0}^{x_j-1} A(3\ell' + 1, n + 2k)$ steps
Halting problem for LOOP programs is decidable

• LOOP x_j DO P' END, assume P' takes $\leq A(3\ell', n)$ time
• Total $\leq \sum_{k=0}^{x_j-1} A(3\ell' + 1, n + 2k)$ steps
• $x_j \leq n$: total $\leq n \cdot A(3\ell' + 1, 3n)$ steps
• $\leq A(3\ell' + 2, 3n) \leq A(3\ell' + 3, n) = A(m, n)$
Halting problem for LOOP programs is decidable

• Corollary: LOOP program cannot compute \(f(n) = A(n, n) \)
• If there is such program \(P \), it has \(m = m(P) \) so \(P \) halts in \(\leq A(m, n) \) steps
• Give input \(n = m + 2 \)
• \(P \) halts in \(\leq A(m, m + 2) \) steps
• Maximum output \(m + 2 + A(m, m + 2) < A(m + 2, m + 2) \)