Review

- WHILE program
- UTM theorem, Normal form theorem, s_{mn} theorem
- Fixed point theorem, quines
Oracle WHILE program

- \(x_i := \varphi(x_j) \) where \(\varphi: \mathbb{N} \to \mathbb{N} \) is fixed
- \(\varphi \) doesn't have to be computable
- Example: \(\varphi = 1_H \) "decides" halting problem and complement
- \(\varphi \) computable \(\Rightarrow \) no need for oracle
Turing reduction

• $A \preceq_T B$: an oracle program with oracle 1_B can decide A
• $A \preceq B \Rightarrow A \preceq_T B$ but not vice versa ($H \preceq_T \overline{H}$)
• Preorder (reflexive and transitive)
• $A \equiv_T B$ (Turing equivalent): $A \preceq_T B$ and $B \preceq_T A$
Turing reduction – basic results

• A is decidable $\Rightarrow A \leq_T B$
• $A \leq_T B$ and B is decidable $\Rightarrow A$ is decidable
• A is semidecidable $\Rightarrow A \leq_T H$
\[D \preceq_T S \preceq_T H \]
for any \(D \) decidable, \(S \) semidecidable

What happens in between?

Emil Post: "Is there \(S \not\equiv_T D, H \)"
Between D and H
Friedberg–Muchnik Theorem

There exist two semidecidable sets A, B that are not Turing-reducible to each other
Friedberg–Muchnik Theorem

There exist two semidecidable sets A, B that are not Turing-reducible to each other.
Friedberg–Muchnik Theorem

There exist semidecidable sets A, B where:

• For all program $TB(i)$ with oracle 1_B, it doesn't decide A
• ...and vice versa
There exist semidecidable sets A, B where:

- For all program $TB(i)$ with oracle 1_B, there exists x where
 - either $x \in A$, but $TB(i)$ doesn't halt or it outputs not 1,
 - or $x \notin A$, but $TB(i)$ doesn't halt or it outputs not 0
- ...and vice versa
Friedberg–Muchnik theorem
Proof idea

• For each TB(i) find an input ("witness") that breaks TB(i)
• Construct A, B iteratively, only add elements
• $A_0 \subseteq A_1 \subseteq A_2 \subseteq \cdots$ and $A = \bigcup_{r=0}^{\infty} A_r$
• TB(i) queries B_r instead
Friedberg–Muchnik theorem
Breaking all programs

• $G_i =$ list of possible witnesses to break $TB(i)$
• G_i, H_i infinite, increasing, partition \mathbb{N}
• x where $TB(i)$ outputs not 1 \Rightarrow put $x \in A$
• Do in rounds so all programs run
Friedberg–Muchnik theorem
Construct in rounds

• $A_0 = B_0 = \emptyset$
• Round r: run $TB(i)$ on $x_i = \min G_i$ with oracle B_{r-1} for r steps, for $i = 1, 2, \ldots, r$
• Case $TB(i)$ outputs 1: do nothing
• Case $TB(i)$ doesn't halt: do nothing
• Case $TB(i)$ outputs not 1: put x_i in A_r
• Then do for $TA(i)$ with oracle A_r
Friedberg–Muchnik theorem
A lot of problems

• $B_{r-1} \neq B$: a program with oracle B_{r-1} is different from oracle B
• Choosing some witness from G_i might invalidate other witnesses
• Put **priority order** on G_i, H_i:
 \[
 G_1 > H_1 > G_2 > H_2 > G_3 > H_3 > \cdots
 \]
• If two choices conflict, lower-priority must fix it
Friedberg–Muchnik theorem
Lower-priority invalidates higher-priority

• \(y \in H_i \) breaks TA\((i)\), but only because \(x \notin A_r \).
• \(x \in G_j \) breaking TB\((j)\) is put into \(A \) in a later round.
• TA\((i)\) queries maximum \(m \).
• Fix: delete \(\leq \ m \) from lower-priority sets.
Friedberg–Muchnik theorem
Higher-priority invalidates lower-priority

• $x \in G_j$ breaks $TB(j)$, but only because $y \notin B_r$
• $y \in H_i$ breaking $TA(i)$ is put into B in a later round
• Cannot do same fix (lower-priority must give in)
• Fix: G_j chooses another x
Friedberg–Muchnik theorem

Finite injury argument

- G_j might need to choose another witness because H_i: "injured"
- Induct: G_i, H_i injured at most $4^{i-1} - 1$, $2 \times 4^{i-1} - 1$ times
- Eventually chooses a witness that is not invalidated
Friedberg–Muchnik theorem
Never got a witness

• $x = \min G_i$ satisfy either $TB(i)$ never halts, or $TB(i)$ outputs 1
• Leave x out of A: x is a witness
Friedberg–Muchnik theorem

Conclusion

• For each $\text{TB}(i)$ we found a witness x where...
 • $\text{TB}(i)$ on x halts with output not 1: we've put $x \in A$
 • $\text{TB}(i)$ on x doesn't halt, or halts with output 1 (i.e. not 0): we keep $x \notin A$
• Made sure the final witnesses don't break each other
• Each round is finite time, no element comes out
• $\Rightarrow A, B$ semidecidable but neither is Turing-reducible to the other