Review

• Complexity classes: \textbf{P}, \textbf{NP}, \textbf{PSPACE}, \textbf{EXP}

• Example problems: 3-COLORING, EULERIAN, HAMILTONIAN, EC, VC, CLIQUE, IS, ILP

• Nondeterministic WHILE+ program: "guess x_i"
Boolean formula – Syntax

F is...
• 0 or 1
• x_i
• $\neg F$
• $(F \land F)$
• $(F \lor F)$

A formula is...
• FALSE or TRUE
• a variable
• negation (NOT) of another formula
• conjunction (AND) of two formulas
• disjunction (OR) of two formulas

Length of formula: number of times to apply these
Boolean formula – Syntax

Formula or not?
• 10
• \(\neg(x_1 \land \neg1) \)
• \((x_1 \lor x_2) \lor \neg x_1\)
• \(a \lor b \lor \neg a\)

Things that are okay:
• Rename variables
• Remove excess parentheses
 • Outer-most parentheses
 • \((F_1 \lor F_2) \lor F_3\) and similar
Boolean formula – Semantics

• Formula without variables is either FALSE or TRUE
• $0 = \text{FALSE}, \ 1 = \text{TRUE}$
• $\neg F$: the other value from F
• $F_1 \land F_2$: TRUE iff both F_1, F_2 are TRUE
• $F_1 \lor F_2$: FALSE iff both F_1, F_2 are FALSE

• Formula with variables: need to replace (substitute) variables first
Boolean formula – Examples

• \((1 \land \neg 0) \lor (1 \land \neg 1)\)
• \((0 \land \neg 0) \lor (1 \land \neg 1)\)
• \((1 \land \neg 0) \lor (0 \land \neg 0)\)
• \((a \land \neg 0) \lor (1 \land \neg 1)\)
• \((1 \land \neg 0) \lor (b \land \neg b)\)
• \((1 \lor 0) \land 0\)
• \(1 \lor (0 \land 0)\)
Boolean formula – Equivalent formulas

• Formulas that give the same evaluation regardless of assignments
• \((a \land \neg 0) \lor (1 \land \neg 1) \equiv a\)
• \((1 \land \neg 0) \lor (b \land \neg b) \equiv 1\)
• \((a \land \neg 0) \lor (b \land \neg b) \equiv a\)

• Truth table
• Laws
Boolean formula – Laws

• Associativity
 • \((a \lor b) \lor c \equiv a \lor (b \lor c)\)
 • \((a \land b) \land c \equiv a \land (b \land c)\)

• Commutativity
 • \(a \lor b \equiv b \lor a\)
 • \(a \land b \equiv b \land a\)

• Distributivity
 • \((a \lor b) \land c \equiv (a \land c) \lor (b \land c)\)
 • \((a \land b) \lor c \equiv (a \lor c) \land (b \lor c)\)

• Idempotence
 • \(a \lor a \equiv a\)
 • \(a \land a \equiv a\)

• Absorption
 • \((a \lor b) \land a \equiv a\)
 • \((a \land b) \lor a \equiv a\)

• Identity
 • \(a \lor 0 \equiv a\)
 • \(a \land 1 \equiv a\)

• Annihilator
 • \(a \lor 1 \equiv 1\)
 • \(a \land 0 \equiv 0\)

• Negation
 • \(\neg 0 \equiv 1\)
 • \(\neg 1 \equiv 0\)

• Complementation
 • \(a \lor \neg a \equiv 1\)
 • \(a \land \neg a \equiv 0\)

• Duality
 • \(\neg \neg a \equiv a\)

• De Morgan's laws
 • \(\neg (a \lor b) \equiv \neg a \land \neg b\)
 • \(\neg (a \land b) \equiv \neg a \lor \neg b\)
EVAL

• Given Boolean formula and assignments to variables, is the result true?
• e.g.
 \[(a \land \neg 0) \lor (b \land \neg b)\] with \(a = \text{TRUE}, b = \text{FALSE}\)
• In \(\mathcal{P}\)
 • Reproduce the derivation tree
 • Evaluate recursively
SAT

• Given Boolean formula, is it satisfiable (has assignment to make it true)?
 • e.g. "\((a \land \neg 0) \lor (b \land \neg b)\)" and "\((a \land 0) \lor (b \land \neg b)\)"
• In NP
 • Witness: assignment
 • First one: \(a = \text{TRUE}, b = \text{FALSE}\)
 • Second one: not satisfiable
 • Because EVAL in P
Conjunctive normal form

- \(c_1 \land c_2 \land \cdots \land c_m \) where \(c_i \) is a CNF clause
- CNF clause: \((p_1 \lor p_2 \lor \cdots \lor p_k) \) where \(p_i = 0, 1, x_j, \neg x_j \) called literal
- Length: sum of \(k \)'s

- \((a \lor \neg b) \land (b \lor c \lor 0) \land (a \lor \neg c) \)
- \(a \lor b \)
- \(a \land b \)
- \((a \land b) \lor c \)
Converting to equivalent CNF

- $(a \land b) \lor c$
- $(a \lor c) \land (b \lor c)$

- Laws: distributivity, double negation, De Morgan

- Push all \neg in
 - De Morgan, double negation
 - Negation to resolve constants

- Structural induction
 - Constant, variable: leave as is
 - $F \land F$: leave as is
 - $F \lor F$: distributivity
 - $\neg F$: only happens with variable, so leave as is
Disjunctive normal form

- \(c_1 \lor c_2 \lor \cdots \lor c_m \) where \(c_i \) is a DNF clause
- DNF clause: \((p_1 \land p_2 \land \cdots \land p_k) \) where \(p_i = 0, 1, x_j, \neg x_j \)

\((a \land \neg b) \lor (b \land c \land 0) \lor (a \land \neg c) \)
SAT, revisited

- k-SAT: Formula is in CNF, each clause has at most k literals
- Notable cases: 2-SAT, 3-SAT

- If formula is in DNF, SAT is in \mathbf{P}
 - Only need one clause true
 - Check if clause can be satisfied: make all literals true (only way to do it)
 - If can't (has $x \land \neg x$), continue to next clause
Why don't we just convert to DNF?

• CNF \((p_1 \lor q_1) \land (p_2 \lor q_2) \land \cdots \land (p_k \lor q_k)\) has length \(2k\)

• Equivalent DNF is

\((p_1 \land p_2 \land \cdots \land p_k) \lor (p_1 \land p_2 \land \cdots \land q_k) \lor \cdots \lor (q_1 \land q_2 \land \cdots \land q_k)\)

• All \(2^k\) possible ways to take one literal from each CNF clause

• Has length \(k \cdot 2^k\)
Recap

- EVAL (evaluation): given formula and assignments, is it true?
- SAT (satisfiability): given formula, can it be true?
- k-SAT: formula is in k-CNF

- 3-SAT is "the hardest" problem in \textbf{NP}: coming soon!
- 2-SAT is in \textbf{P}
2-SAT is in \(\textbf{P} \) – Krom (1967)

- Preprocessing: remove constants and duplicate clauses
- \(n \) variables, up to \(4n^2 \) clauses

- If there are \((a \lor b)\) and \((\neg b \lor c)\), we can generate \((a \lor c)\)
- If there is \((a \lor a)\), then \(a\) must be true
- Idea: From \(\varphi \), generate extra clauses over and over to get \(\varphi' \)
- Consistent: \(\varphi' \) doesn't have \((a \lor a)\) and \((\neg a \lor \neg a)\)
- \(\varphi \) satisfiable if and only if \(\varphi' \) consistent
2-SAT is in \mathbf{P} – Satisfiable \Rightarrow Consistent

- Assignment for φ works for φ'
- Induct on number of generations
- 0: $\varphi' = \varphi$
- k to $k + 1$: only thing that matters is $(a \lor b) \land (\neg b \lor c) \rightarrow (a \lor c)$
- $(a \lor a) \land (\neg a \lor \neg a)$ not satisfiable
- Not consistent \Rightarrow not satisfiable
2-SAT is in P – Consistent ⇒ Satisfiable

• Free variable a: no $(a \lor a)$ or $(\neg a \lor \neg a)$ in φ'
• Induct on number of free variables
• 0: all variables set; $(a \lor a)$ means a true, $(\neg a \lor \neg a)$ means a false
• k to $k + 1$: suppose a free, we claim adding $(a \lor a)$ is consistent
2-SAT is in \(\mathbf{P} \) – Consistent \(\Rightarrow \) Satisfiable

Claim: Suppose \(a \) free, we claim adding \((a \lor a)\) is consistent

- What clauses got added?
 - \((a \lor a) \land (a \lor b) \rightarrow (a \lor b)\)
 - \((a \lor b) \land (b \lor c) \rightarrow (a \lor c)\)? Already made
 - \((b \lor a) \land (b \lor c) \rightarrow (b \lor c)\)
 - \((b \lor c) \land (b \lor d) \rightarrow (b \lor d)\)? Already made

- Only two kinds of new clauses
 - Let \(S \) be set of all \(x \) where \((a \lor x)\) exists
 - New clauses: \((a \lor x)\) and \((x \lor y)\) for all \(x, y \in S \)

- In particular: \((x \lor x)\) for all \(x \in S \)
2-SAT is in P – Consistent \Rightarrow Satisfiable

Claim: Suppose a free, we claim adding $(a \lor a)$ is consistent

- Suppose not consistent: has $(b \lor b) \land (\neg b \lor \neg b)$
- Claim: a wasn't free, contradicting assumption
- **Case 1:** $b = a$
 - $\neg a \in S$ so $(\neg a \lor x) = (\neg a \lor \neg a)$ already existed
- **Case 2:** $(b \lor b)$ and $(\neg b \lor \neg b)$ new
 - $b, \neg b \in S$ so $(\neg a \lor b) \land (\neg b \lor \neg a) \rightarrow (\neg a \lor \neg a)$ existed
- **Case 3:** $(b \lor b)$ new, $(\neg b \lor \neg b)$ not new
 - $b \in S$ so $(\neg a \lor b)$ existed
 - Then $(\neg a \lor \neg b)$ and $(\neg a \lor \neg a)$ existed
2-SAT is in \(\mathbf{P} \) – Algorithm

- Proved: \(\varphi \) satisfiable if and only if \(\varphi' \) consistent
- Generate over and over
 - Find a clause to generate: \((4n^2)^2 = \mathcal{O}(n^4) \)
 - At most \(4n^2 = \mathcal{O}(n^2) \) new clauses
 - Check consistency: \((4n^2)^2 = \mathcal{O}(n^4) \)
 - Total running time: \(\mathcal{O}(n^4) \times \mathcal{O}(n^2) + \mathcal{O}(n^4) = \mathcal{O}(n^6) \) is polynomial time
- Can be improved to \(\mathcal{O}(n^2) \)
- Even, Itai, Shamir (1976): linear time by limited backtracking
- Aspvall, Plass, Tarjan (1979): linear time by strongly connected components of implication graph
More decision problems

• TAUTOLOGY: given formula, is it always true?
 • Complement in NP
 • If formula in CNF, in P

• EQUIV: given two formulas, are they equivalent?
 • Complement in NP

• SHORTER: given formula, is there an equivalent shorter formula?
 • Not clear! But in PSPACE

• LONGER: given formula, is there an equivalent longer formula?
 • In P
More satisfiability problems

• 1-IN-3-SAT: given 3-CNF, is there assignment so exactly one literal from each clause is true?
 • In NP

• ODD-3-SAT: given 3-CNF, is there assignment so an odd number of literals from each clause is true?
 • In P

• MAJ-SAT: given formula, is there a majority of the assignments that make it true?
 • Not clear! But in PSPACE

• #SAT: given formula, how many assignments make it true?

• MAX-SAT: given CNF, how many clauses at most can be satisfied?
 • Function problems, not decision problems
 • Hard, even for 2-CNF
HORN-SAT

• Horn clause: at most one positive literal (e.g. a, $\neg a$, $(a \lor \neg b)$, ...)
 • Implication: "if all negated variables are true, the positive is true"
• HORN-SAT: Given CNF where each clause is a Horn clause, is it satisfiable?
• In \(\mathbf{P} \)
 • Clause of single literal \(l \): set \(l \) true, remove all clauses with \(l \), remove \(\neg l \) from their clauses
 • If nothing else to remove: clauses have \(\geq 2 \) literals, so has a negated variable; set all variables false
 • Unsatisfiable iff \(l \) and \(\neg l \) happen