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What is a programming language made for?

+ for formally describing composite computations ('algorithms')

such that the description can be automatically processed to
control the execution of the operations on a computing machine.

(our computers are built to carry out individual arithmetic operations in a 
  few ns such that input, output, an storage of data must be automated).

- formal languages are used in mathematical logic and sometimes serve
for automatic theorem proving. Programs are sometimes 'verified' or
tried to be proved to be correct. For the execution on a machine only
input data and some intermediate data may need to be checked to meet 
certain conditions.

- Programming languages can also be used to just specify some desired
processing, or to define the behavior of external input and output and
optionally derive a simulation of an embedded system.



  

Notion of 'Algorithms' 'FNA'

- Algorithms are given by a composition scheme (a directed graph S) with
a set C of compute nodes and an assignment  :C→O of nodes to types
of computational operations with compatible signatures. The composition 
scheme involves

compositions of functions and operations ( f °g )
branches to select between (the results of) alternative sub computations

Algorithms not performing memory access operations but only numeric
operations/functions compute pure functions mapping numbers to numbers.

.. are supposed to do so after a finite number of selected steps.

Operations to be composed
are the operations specified
for the available data types.

- Algorithms will suffer from

errors due to applying operations/functions to data outside their domains

approximation errors due to the finiteness requirement

interpolation errors once functions are represented by finite tables only

rounding/overflow errors depending on the number codes used on a machine
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Requirements on the –Nets Programming Language

intended for numerical applications (signal processing, robotics etc.),

particularly embedded FPGA/SoC applications, HPC

- support simple FPGA based processors, small memories, no caches

- support numbers represented by various codes including non-standard ones

- support heterogeneous networks of FPGA based processors, distrib. memory

- define and support heterogeneous networks of FPGA/SoC/processor nodes

- provide basic real time control for IO operations

Extra requirement: .. besides supporting readable and well-structured programs

- do so in a simple way to arrive at a small yet powerful programming tool

 ..see SoC documentation for special motivation



  

The Fifth programming language (1985-1995) .. proving simplicity is possible

- supporting several mirocontrollers/-processors and small networks of such
through preconfigured versions of the compiler, integrated assemblers
Z80, 6301, 6809, 8031, 8086, 68000, 80166, 78312, Transputer, 2181, Sharc

- machine oriented providing bit field operations
HW abstraction by programming for a stack oriented virtual machine

- infix notation for numerical expressions, number code input (fixed/float)

- multiple threads, process local variables

- small integrated programming, compiler and debugging environment
    implemented in Fifth and compiled for the PC 
interactive testing by linking the execution environment to the PC

- successfully used in a number of industry projects



  

Could some subset of the mathematical notation in textbooks be part of a p.language?

* Some nice notational features:
- values defined by expressions don't need a termination symbol
- names for functions/data can freely use special symbols, Greek characters
- can use subscripts and superscripts,  can chain comparisons
- formulas can extend above and below a baseline (integrals, fractions)
- conditional, even recursive assignments extending over several lines

* Mixing with nat.lang.  w/o extra indications
- formulas often embedded into nat.lang. Sentences
- math.texts are edited for the human reader, headers, comments
- textual references to previous definitions/contexts

Notions lacking a mathematical counterpart
- IO, communications, reading and writing variables, processes/threads, real time

Mathematical constructors w/o a counterpart on a computer
- defining infinite sets such as cosets of a vector sub space or infinite sub group
- defining sets of equivalence classes
- using images of some infinit set under a mapping
- using existence results proved non-constructively

Algorithms and proofs
- algorithms can be extracted from constructive proofs which yet focus on verification



  

Methods to achieve simplicity

- restrict range of applications and targets

N: numerical apps, simple target procs, static allocation

choice of paradigms to identify/restrict programming task

- abstraction from implementation techniques

- small number of algorithmic constructors and a simple syntax

- small number of data types and type constructors

N: distinguish data types by their operations only

- supply powerful predefined operations

N: tuple operations (e.g. vector operations '+','-' w/o loops)

- apply functorial methods as high-level compile-time functions

overloading symbols (names of operations)

- support parallelism, real time, target definition etc. in simple ways

using hierarchic definitions to cope with complex apps

- provide a simple programming amd debugging environment



  

Data operated on by –Nets programs:

fixed size tuples of real* numbers (finite fixed size tuple valued function tables)

tuple/table entries may be 'invalid'
.. no 'row' or 'column' vectors no other predefined or derived data sets

predefined tuple operations: apply tuple as a function, composition
linear/multilinear vector operations

(using ideal real arithmetics) polynomial operations
interpolation operations

..   important basic selection .. set operations
   (extend by libraries of algs) relations .. used to test&branch

Algorithms are statically defined, pure program functions:

map tuples to tuples .. compatible with tuples applied as functions
may have invalid results .. can be tested for to branch

always terminate .. to be vf'd by the programmer
.. maybe, with an invalid result .. recursion supported to limited depth only

program functions can be grouped into 'optype' definitions and then redefine/
overload predefined op symbols such as '+' and '*'; the optype names are used 
to select the definition to be applied (simple substitute for data type definitions)

    * could use rational/algebraic/computable numbers instead, encode two numbers (scaling, error)



  

Tuples can represent various mathematical objects as 'coordinates' dep. on choices

- tuple coordinates are the same for vectors, linear forms, and tensors etc.
   the distinction is through the applied operations, and their index mapping

- vector/tensor coordinates depend on a choice of basis
   algorithms may need to keep track of the basis and to perform base changes
   the handling of units is a special case

- a small number of alternative coordinates (e.g. charts of a manifold) can be
handled using a dynamic index parameter and indexed functions selected by it

- mathematical objects defined as possibly infinite equivalence classes must be
   handled by using coordinates for representatives of the classes. The classes
   may require changes of their representative. In easy cases they don't, e.g.
   modulo classes of numbers or polynomials, or correspond to base changes.

    Example: associating a vector bundle with fiber V to a principal G-bundle P  … PV/~

    Rem: unordered finite sets of numbers can be represented as equivalence classes of tuples



  

Details on the –Nets tuple operations and expressions: .. indexes are 0…n-1

    .. expressions bound by infix ops with a result

applying a unary function/operation f  x  g(x,y) f apply-to x

use nested function calls within expressions h f x

applying a binary (2-argument) operation x + y·z x apply-add ..

applying a tuple as a linear function y x A x

nested applications are right associative f y x y x z

applying a tuple as a function, compose tuples y.i y:k.i y ° x

applying a tuple y as a polynomial y pol  x

applying a tuple y by interpolating from it y ipl  x

.. functions and data tuples distinguished by a symbol attribute

.. results of expressions can be named for further references

relations w/o results can be 'chained', too 0  x  1



  

A non-standard tupel operation:

V     = IRk vector space, dim V = k, base  e
0
,..,e

k-1
 

mV = IRs outer product space, dim mV = s base  e
0
/\.../\e

m-1
 , … 

/\: mV  V → m+1V  outer product,IRs IRk  IRs  → IRs 

    V   mV → m+1V IRs  IRk  → IRt 

Application 1: determine whether a vector is in a given subspace WV

Application 2: compute the determinant of k vectors

Application 3: a tupel x accessed as x:s is a sampled differential form

Question to the language designer:

Do the presumed applications legitimate the inclusion of /\ 
 as a predefined tuple operation ??



  

.. more

- tuple literals are lists of numbers x, y, z, … , w

or evaluations of some function/alg f on 0..n-1 n:f

- functions/operations map k tuples to a single tuple

- two-dimensional indexing reads x:m.i.j or x:m.(i,j)

and extends to more dimensions x:(m,n).(i,j,k) (a number)

x:(m,n).(i,j)  (an n-tuple)

- separate operators '°', '.'  →  simple vector syntax and multidim. indexes

.. compatibility of algorithmically defined functions and tuples

- tuples of functions/algs can be formed, too f, g, h

define another function, application (f,g) x = (f(x),g(x)) . (f,g)(x,y)=(f(x),g(y))

.. compatible with matrix*vector notation  A x or A:n x

- define compositions of functions w/o arg.refs. f °g (f °g) x = f g x = f (g x)



  

Functors vs functorial substitution

In category theory, functors map objects of one category to objects of another, 
e.g. a vector space V to its dual V*, and morphisms between objects to morphisms 
between the corresponding objects in a way compatible with composition, 
e.g. a linear map h:V→W between vector spaces to the transposed map hT:W*→V*.

An algorithm specifying multiple compositions (a finite number) is then mapped to a 
similar algorithm in the target category, the 'algorithm'  f °g  e.g. to the algorithm gT°fT.

In this presentation, functorial substitution refers to a method applying to algorithms 
(defined in a programming language), namely the formal substitution of their opera-
tions by associated ones operating on other data yet maintaining the composition 
scheme. The substitution also applies to operations/functions with multiple arguments 
and to conditions, branches and recursions in order to cover all algorithmic structures.

Functorial substitution can also be applied if it is defined for the function computed
by an algorithm, too (not only predefined ones) and is not a functor. Then for the 
function F defined by an algorithm A, the substituted algorithm A' need not be an 
algorithm for the substitute F'. If F is 'called' in another algorithm, there is the choice 
to either substitute F by F' or to substitute it by the function computed by A'.

The substitution may be applied to predefined functions by choosing algorithms for
them. It may be an automatic compiler operation or be on explicit commands yet w/o
needing to explicitly redefine the composition scheme, thus simplifying programming. 



  

Functorial substitution

S

S: a composition scheme (dir.ac.graph w.IO)
C: set C of compute tokens in S

Every mapping 
: C → O , O a set of types of cp. operations

determines an algorithm S() for a function F

.

Functorial substitution for a cp. assignment
t:O→O'
transforms the algorithm  S()  to  S(t°) 

Generally, F

O or S(t°) is not alg. for t F

 
.

f

f h

g

jS()

f '

f ' h'

g'

j'→        S(t°)

.. algorithm computing F


.. algorithm computing F
t°       

( tF

)

f '=tf  etc.



  

0. Mapping operations and functions to multiple data

Map operations/functions f: P→Q  to f ': Pn→Qn , (p
0
,..,p

n-1
)→(f(p

0
),..,f(p

n-1
))

.. for P=AB, f has two arguments, and f ' is defined to be a function on AnBn  .
or more  (AB)n

Example: the scalar add operation +:IRIR→IR   extends to the vector add operation.
    ...    mpy ... *    … to multiplying vectors by components

LISP: use MAPCAR for this extension

–Nets: automatic extension (overloads operations/functions to more tuple operations)

.. more options:  f(a, b) = (f(a,b
0
), … , f(a,b

n-1
)) for aA and bBn etc.

This substitution is (an extension of) a true functor. Substituting all operations in an 
algorithm A without branches for a function f by the corresponding tuple operations 
yields an algorithm A' for the function f' on tuples. 

Equivalently, the individual f(p
i
) can be computed separately which also allows for a 

control flow with individual branch selections, i.e. by horizontally expanding the original 
algorithm instead of substituting the operations/functions therein.



  

1. Automatic differentiation

f: U  V → W differentiable, with V=IRn, W=IRm (real vector spaces)

Df: U → L(V,W) , Df(u) derivative of f in u (the approximating linear map)

Sum: D(f+g)(u)=Df(u) + Dg(u) for g: V→W
Product: D(h(f,g))(u)=h(Df,g)(u)+h(f,Dg)(u) for g: V→Y, h:WY→Z bilinear
Chain rule: D(g°f)(u)=Dg(f(u))°Df(u) for g:W→Z

D(h(f+g))(u)=Dh(f(u),g(u))°(Df(u)+Dg(u))  for g: V→W, general h

→ derivatives of compositions  can be computed from the (f(u),Df(u)) of the components
    chain rule involves composition of linear maps (matrix product)
→ can substitute calls to functions f by calls to the (f,Df) evaluated according to the rules
     at individual uU to compute composition of function tables with functions/operations

Applications only requiring particular partial derivatives Df(u)·v don't need matrix products:

Define TU=UV ( the tangential bundle over U, i.e. the union of the T
u
U={u}V ) and

  Tf: TU→TW (u,v) → (f(u),Df(u)·v)

The the composition rules simplify; the chain rule e.g. becomes T(g°f) = Tg°Tf .

→ can substitute calls to functions f by calls to the Tf evaluated with the simplified rules
    (need to know the derivatives of the used elementary functions .. their approximations)

.. derive Hamiltonian vector fields from function

Automatic differentiation extends to higher derivatives:
Algorithms for functions f:U→W extend to functions on 'jet' spaces UL(V,W)L

s
(V²,W),

or as T(Tf)(u,v,x,y) = ( f(u), Df(u)v,  Df(u)x, Df(u)y+D²f(u)(v,y) ).

N: use the name T'f for an algorithm f or a function table and call to f or to T'f as needed.



  

Higher order approximations through higher order derivatives:

For UV, TU=UV is the set of first order approximations (0)+t·'(0) to curves t→(t) at 0.

For f:U→W, Tf  maps the approximation to  to the approximation of f° at 0. T(f°g)=Tf°Tg.

Define  T
(r)

U = UV…V  (r+1 factors). Then TU=T
(1)

U.   T
(r)

U is the fiber sum r times TU.

The (u,v
1
,...,v

r
) T

(r)
U parametrize the rth order approximations t→u+t·v

1
+t²/2·v

2
+...+tr/r!·v

r

to curves  at 0, i.e. v
i
=(i)(0).

Define T
(r)

f:T
(r)

U→T
(r)

W  to map the rth order (Taylor) approximation to  to that of f° at 0.

Lemma: For fixed u, (T
(r)

f)
i
 is polynomial in the v

j
 and the derivatives of Djf for ji.

T
(r)

 is functorial, T
(r)

(f  °g)=T
(r)

f ° T
(r)

g.

Proof: (u,(1)(0),(2)(0),...)=T
(r)

(0,1,0,0,...), need to compute T
(r)

(f°)(0,1,0,0,...), the (f°)(i)(0).

(f°)(1)(0) = Df(u)v
1
with u=(0), v

1
=(1)(0), (f°)(2)(0) = D²f(u)(v

1
,v

1
) + Df(u)v

2
 , 

(f°)(3)(0) = D³f(u)(v
1
,v

1
,v

1
)+3D²f(u)(v

1
,v

2
)+Df(u)v

3
  etc. by the chain rule … q.e.d.

Rem.: - for a diffeomorphism f  T
(r)

f is a diffeomorphism, yet nonlinear on the fibers for r>1

    - the functoriality of T
(r)

f allows for an automatic rth order differentiation →Drf(v
1
,..,v

1
)

    - can be applied to numerically 'solving' first order ODEs.



  

2. Substituting predefined operations by composite ones

Vector operations (e.g., linear mappings) and polynomial operations (evaluation,
product, division) are defined in terms of the '+' and '*' operations of some base
field/ring. Their substitution can be defined by a change of these ring operations.

From a given type of real numbers, complex operations can be defined on pairs
of real numbers in the usual way, using the definition (a,b)*(c,d)=(ac-bd,ad+bc) as
an algorithm. Complex n-vectors can be represented as size 2*n tuples, and the 
operation of multiplying a complex scalar to a complex n-vector becomes an ope-
ration multiplying a pair to a 2n-tuple with a 2n-tuple result. The real pair-to-vector
multiplication can be overloaded with this complex operation without affecting the 
real scalar to 2n-vector operation.

This can be used to expand existing predefined linear and polynomial operations
to other base rings while maintaining their usual names and calling syntax. The
Substitution is thus applied to the defining algorithm of the predefined operation.
The substitution of the operations within a previously defined program function is 
rarely needed, however, and does not need to be supported at all.

N: Complex and quaternion operations are easily defined and packed into
corresponding optypes; the same applies to other real algebras and even
to redefining the real '+' and '*' by modulo operations. Algorithms selecting
an optype overloading the '+' and '*' operations  then dispose of the corres-
ponding vector and polynomial operations as well.

Whether a 2n-tuple 'is' a real or a complex vector depends on the 
operations (optypes) applied to it only. .. coord sel.



  

1) For 2n-tuples x,y their dot product 'x y' is the real number  


i  
x

i
·

 
y

i
  .

If 'cpx ·' is defined and 'cpx' selected then 'x y' denotes the complex dot product. 
x,y become accessed as tuples of pairs x:2,y:2 .

2) 2n-tuples are applied as polynomials to a number x writing 'x.pol y' to get  


i  
x

i
·

 
yi .

After selecting 'cpx'  'x.pol' applies to pairs z, using pairs (x
2i
,x

2i+1
) as complex coeffs.

3) nk-tuples x are applied to k-tuples of numbers as polynomials in k variables writing
'x:k:n.pol y' to get  


(i,j,k..)  

x
(i,j,k,..)

·
 
y

0

i ·
 
y

1

j ·
 
y

2

k …  . 

Selecting '+' and '·' operations mod(2) and n=2  2k-tuples can be applied as 
Boolean functions to k-tuples with 0/1 entries.

.. bad BF encoding .. many other examples .. finite fields etc.



  

3. Using functorial substitution to support various number codes

Numbers need to be encoded by bit strings before they can be digitally computed with.
    digit

enc: IR → B*   encoding function partially defined
dec: B* → IR   decoding function     partially defined  such that

r nd = dec°enc: IR → IR the 'rounding' function       fulfils enc(r) = enc(r nd(r))
hence   r nd°r nd = r nd

Rem.: rnd ist unique, rnd/enc often derive from dec

Operations     op: IR → IR are substituted by   op'=enc°op°dec: B* → B*  on the machine

r = r nd(r)      dec(op'( enc(r)) )  =  r nd(op(r)) (substitution inserts rounding)

Operations  op: IRIR → IR  etc. are handled similarly.

Numeric algorithms (compositions of real operations) are executed on the machine by per-
forming functorial substitution of every operation  op  on the reals by the corresponding op'
on number codes  rounding its output. The same substitution also applies to the composed
real function. In general, substituting within the algorithm does not yield an algorithm for the
substitute of the composed function without intermediate rounding (the 'fused' one).
If a program function g is called within an algorithm for f, g is not substituted as a fused 
composite operation with added rounding, but by the function computed by the substituted
algorithm for g similarly to expanding the algorithm for g into the algorithm for f, flattening
the hierarchic definition. Machines may be built to compute certain fused functions, however.



  

Standard PLs   distinguish different types of numbers by the codes to be applied (int,float). 
     .. no abstract reals, rounded substitutes for the real operations only

.. mathematical algorithms substituted by hand (conscientiously ..?)

-Nets:      supports several standard and non-standard encodings including

I32, X16, X35, V144, F32, F64, G45 .. to be expanded

by their (unique) rounding operations only and as attributes to the abstract computations 
performed by its processes telling the compiler how to substitute operations. The rounding
operations are available as predefined real operations allowing to test for the applicability 
of the code and to model the operation of the executing machine. For every encoding, 
errors can and need to be estimated and tracked through an algorithm, maybe using 
simulation.

The I32 code applies to integers only and does not perform rounding at all. An extra integer 
divide operation is available to explicitly 'round' real numbers to nearby integers. The
functorial substitution by rounded operations also applies to the comparisons like 'a=b'. It
becomes the comparison of the codes of a and b. Invalid data are encoded as well.

By default, number codes extend to tupels of real numbers using tuples of codes of their 
entries. n-Tuples can be applied as functions to integer indexes in the range 0...n-1 only
(yield invalid data otherwise). As primary data tuples can use codes of their own, e.g. an n-
tuple of fixed point mantissas plus a extra exponent. The elementary functions typically add 
extra approximation errors. Certain composite operations can be implemented as 'fused' 
operations w/o intermediate roundings, e.g. the complex operations for V144.

Rounding error estimate .. constant/var .. ähnl. optype const .. err fct 



  

Implementation in the -Nets compiler:

- intermediate code (CDGF) DFTs represent real number operations
may use associativity/commutativity for optimization etc.

tuple operations not expanded into scalar operations, appear as tuple DFTs

no expansion of function calls in the intermediate code

number code selection is a CFDG attribute

- automatic insertion of rounding operations for interpretation of the intermediate
code for the purpose of simulation

interpretation applied to constant folding and to external processes uses a
high precision code type performing rounded operations from which the
less precise application codes are rounded (r nd

app
= r nd

app
°  r nd

max
)

automatic substitution of encoded operations during code generation and

automatic insertion of code conversions for data transfers between processes

- storage for intermediate data and the variables of application processes:
  storage of numbers is in full internal precision for interpretation/simulation, but
  is for the required code word size only on the processors executing native code

Rem.: external memory is a set of special function nodes storing/xferring msgs



  

Error handling and 'invalid' codes.

The automatic insertion of rounding operations during simulation or code generation
may cause runtime errors at places that are not explicit in the program, such that the
errors are not handled by the program. The same kind of error also occurs for the im-
plicit code conversions when data are sent from some process to another one using
different codes. In these cases the failing rounding operation (indicating that the 
number to be encoded is outside the encoded domain) returns an 'invalid' but does 
not break execution. Embedded applications often tolerate erroneous data.

All scalar operations on numbers are defined to yield an invalid result on invalid input. 
In a tuple, individual entries may be valid or invalid, and tuple operations defined in 
terms of scalar operations can still deliver tuples with some valid components. In order 
to maintain this functionality, number codes must provide at least one bit pattern 
for invalid data. The standard floating point formats provide NaN codes that can be 
used for this, and standard floating point units deliver NaN outputs on NaN inputs. If
more codes are available for invalid data, they can be used to transport more informa-
tion on the error.

As –Nets only provides numeric operations and numeric or invalid output there seems 
to be no way to symbolically annotate its numeric outputs on some display. A simple 
trick is played to overcome this limitation. Strings like “abc” are allowed as literals for 
invalid data and sent to the predefined process writing to the display. This process inter-
prets the invalid data as the command to print out the string or the error it represents.



  

4. Deriving error functions

Rounding errors reflect the approximate representation of input data and the results
of operations. They are usually estimated by an upper bound but actually depend on 
the arguments of the rounded operation. For a program function, errors accumulate
depending on the data (also via the branches taken that may depend on rounding). 
During simulation operations may be substituted by double operations one executed
with the prescribed rounding and the other at the highest available precision.

A similar approach can be taken to analyze the approximation errors by simulation.
They occur when the true result is the limit of a sequence of numbers computed by a
recursive program function stopped after a finite number of steps. Ideally, the recursion 
delivers nested intervals around the limit. Achieving a desired precision will also depend 
on the precision of limits on the way and on the rounding errors after substitution.

If a finite computation aims at approximating a function f on an infinite domain, e.g. an 
open subset U of some real vector space V, the result can only be a finite tuple of input 
parameters to some fixed algorithm computing the approximate values. A standard 
setup is to use a discrete subset HU, to compute approximate values of  f  on H, and to 
apply an interpolation operation on these to get the approximation to f on U. More gene-
rally, there is a finite-dimensional parameter space W, a linear 'interpolation' operation 

d: W → F(U) and a (generalized) sampling operation c: F(U) → W

such that c°d = id
W 

. This is similar to the coding of numbers. The 'rounding' e = d°c can

serve to substitute operations p of F(U) (like differentiation) by operations p'=c°p°d on W.



  

Examples:

0) W is the space of functions on H, F(U) → W is restriction. The interpolated
functions for a subspace PF(U) are in bijection to W under restriction.

1) U is the unit cycle in the complex plane and H is the set of n-th roots of unity.
Interpolate with the (sin x)/x kernel. P is the space of complex polynomials of
degrees < n and in bijection with the space of their coefficients (DFT). 

2) U is the sphere in IR³, W the space of homogeneous polynomial functions of 
degree n on IR³. Restriction to U is injective.

3) F
r
=F(U, r V*)  r-forms on U,  d:F

r
→F

r+1
 exterior differentiation


M
:F

r
→IR,   →

M
 integration over r-dim. MU

Stoke's formula: 
M
d = 

M
   r+1-dim. M with boundary M

Discretization: describe MU as a simplicial complex, M= U
i 
S

i
 

'encode'  by  the tuple of the  
N
  over all r-subsimplexes of the S

i
 

   → can compute integrals of  over arbitrary r-submanifolds of M exactly from its 'code'

   → get encoded d operator by using Stokes for mula to get the code for d (all 
Si
d)

can use Whitney forms for interpolation



  

Remarks on the d-operator on forms and its discretization:

- The d-operator on forms does not depend on a choice of coordinates;
the same holds for differential derived from d.
The discretization transforms such operators to linear ones on tuples

- a prominent operator of this kind is the Laplacian on k-forms,

 = *d*d  + d*d*   

that also involves the Hodge-Operator  *: r V* → n-r V*  (n=dim V).
'*' needs to be 'encoded', too. The corresponding 'code' tuple spaces
W

r
 and W

n-r
 are not isomorphic, however, as they should be. Instead,

a dual cell complex and a corresponding d operator need to be used.
The n-r-cells in the dual complex correspond 1-1 to the r+1 simplexes
to which they are orthogonal w.r.t. the Euklidean dot product.

- The Maxwell equations describing electrodynamics can be expressed
with the d operator. E and H are the electric and magnetic fields on IR³, 
respectively, D and B the dielectric and magnetic flows. E and H are time 
dependent 1-forms on IR³, D and B time dependent 2-forms, and D=*E, 
B=*H up to constants. Computations of these forms can then use the
discrete exterior calculus (DEC). This application and others legitimate
its support by special operations.

(see Bossavit, Leok/Ster n, Arnold)



  

Completing -Nets

- syntax for literals, expressions, control

definitions of constants, functions

'optype' definitions with options to overload, inherit

- 'atype' definitions (types of automata with memory), options to overload, inherit

process definitions (w. variables, sub automata); automata are primitive processes

communications between processes incl. external I/O

real/execution time control,  sub processes (threads),   rounding/code selection

-----------------------------------------------------------------------------------------------------------------

- 'ntype' definitions of target components w. inheritance (hierarchy), P,B,M,A

.. FPGA components are defined as special composite components

- 'node' definitions describing the target network (incl. data links and boot trees)

.. structural 'program' for target network .. similar automata and processor networks

- syntax to assign threads to processors, some caching&reconfiguration support

.. process variables located on the executing P or M nodes



  

An example: Musical Processes

const t1 288, t4 264, t8 260, t38 268, t16 258, t316 262, 
c 60, e 64, g 67, c' 72,   band 151, pia 128, wood 243,   x0 384

fct 1 1 fib      .. defines algorithm for Fibonacci sequence mod(24)
{ → i  

{ → aa,bb,ii ,, end recursive  expression 
 if ii=0   then aa 

else  if ii=1   then bb 
else bb, aa+bb %24, ii-1  ←} (0,1,i) 

}

apc mt on host { $$+0.125   1 >> R  ←} .. increase musical time

apc mus  on host,    .. main application process group
 (mdo) vc1 band, 55    .. midi sub automata (predef.type)
 (mdo) vc2    pia, 77, x0 .. receiving initial input
 (mdo) vc3    wood, 88    .. midi threads redefine top lvl.'apply'

{
   #vc1 t1   24:{→i   fib(2i)+66 t16  fib(2i+1)+66 t316 }

   #vc2 14:{→i  fib(3i)+54  fib(3i+1)+58 t38   fib(3i+2)+60 t8}   c,e,g,c' t2

   #vc3    7:{   c' t316   c' t316   c' t4   c' t316   c' t316  }    drum 100  c' t38
}



  

const dt 1/256

fct 2 2 chg {→ gh,k   if gh>3  then  gh-,1-k else if gh< -3 then  gh+,1-k   else  gh, k }

fct 2 2 pos {→ s,k     if k=0    then  (cos s, sin s)   else (- cos s, - sin s) }

fct 2 1 ang {→ g,h  {→d  if d> then d-2 ←  else if d< - then d+2 ←  else d }(g-h) → e   e/2 }

apc (gc) gd on host .. display

apc part on host,  t 0,  g 0,  g' 0.5,  gk 0,  h 0,  h' 1.5,  hk 1 
{

$$+ dt .. real time ! .. unit is 'sec'

pos(g,gk) → gx,gy pos(h,hk) → hx,hy .. in IR²

ang((g+*gk),(h+*hk)) → a

cos(a)/((hx-gx)²+(hy-gy)²) → f .. repelling force

{ if a<0 then -f else f } → gh''

g + g' dt + gh'' dt²/2    >> g .. differential equation
g' + gh'' dt                  >> g' 
h + h' dt – gh'' dt²/2    >> h
h' – gh'' dt                  >> h'  .. same for both coordinates

chg(g,gk) → ng,ngk      ng >> g ngk >> gk

chg(h,hk) → nh,nhk      nh >> h nhk >> hk .. change of coordinates

0,0,0 >> gd.r .. display g,h

100(gx,gy)+(110,110) >> gd.p  0,0,0 >> gd.b

100(hx,hy)+(110,110) >> gd.p 0,0,0 >> gd.b
←}

2 charged particles moving on the unit circle
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