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Quick Review : ε-δ Argument (Calculus I / Analysis I)

Definition 1

A function f defined on a set X of real numbers has the limit L at x0, i.e.,

lim
x→x0

f (x) = L,

if, for any ε > 0, there exists δ > 0 such that∣∣f (x)− L
∣∣ < ε, whenever x ∈ X and 0 < |x − x0| < δ.
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Quick Review : ε-δ Argument (Calculus I / Analysis I)

Why ε-δ argument is important?

Because it provides δ for every ε > 0, regardless of the magnitude of ε.

In other words, we can think that there exists a function f : ε→ δ such
that it satisfies the condition.
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Quick Review : Probability and Statistics

Definition 2

The set S of all possible outcomes of an experiment a way that in
each trial of the experiment one and only one of the outcomes
(events) in the set will occur, we call the set S a sample space for
the experiment. Each element S is called a simple outcome, or
simple event.

An event E is defined to be any subset of S (including the empty set
and the sample space S). Event E is a simple event if it contains
only one element and a compound event if it contains more than
one element.

We say that an event E occurs if any of the simple events in E
occurs.

6 / 46



Quick Review : Probability and Statistics

Definition 3

Given a probability assignment for the simple events in a sample space S ,
we define the probability of an arbitrary event E, denoted by P(E ), as
follows:

If E is the empty set, then P(E ) = 0.

If E is a simple event, i.e. E = {ei}, then P(E ) = P(ei ) as defined
previously.

If E is a compound event, then P(E ) is the sum of the probabilities of
all the simple events in E .

If E is the sample space S , then P(E ) = P(S) = 1.
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Quick Review : Probability and Statistics

Example : In a family with 3 children, excluding multiple births, what is
the probability of having exactly 2 girls? Assume that a boy is as likely as
a girl at each birth.

First we determine the sample space S :

S = {GGG ,GGB,GBG ,BGG ,GBB,BGB,BBG ,BBB}

Since a boy is as likely as a girl at each birth, each of the 8 outcomes
in S is equally likely; so each outcome has probability 1

8 .

There exists only 3 cases, GGB,GBG ,BGG . Thus the probability of
having exactly 2 girls are 1

8 × 3 = 3
8 .
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Quick Review : Probability and Statistics

Definition 4

The expected value, also called the expectation or mean, of a random
variable is its average value weighted by its probability distribution.

The expected value or mean of a random variable X is written as E(X ).
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Quick Review : Probability and Statistics

Example : What is the expectation value of rolling a 6-sided die?

Answer : The mean of a discrete random variable is defined as

E(X ) =
∑
x∈X

xp(x),

where X = {1, 2, 3, 4, 5, 6}. Therefore,

E(X ) =
1

6
+

2

6
+

3

6
+

4

6
+

5

6
+

6

6
= 3.5.
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Basic Definitions

Definition 5

We denote by X the set of all possible examples or instances. X is also
sometimes referred to as the input space.

Definition 6

The set of all possible labels or target values is denoted by Y .
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Basic Definitions

To make the problems easier, we will limit ourselves to the case where Y is
reduced to two labels,

Y = {0, 1}.

which corresponds to the so-called binary classification.
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Basic Definitions

Definition 7

A concept c : X → Y is a mapping from X to Y .

Definition 8

A concept class is a set of concepts we may wish to learn and is denoted
by C .
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Basic Definitions

We assume that examples are independently and identically distributed
(i.i.d.) according to some fixed but unknown distribution D.

Definition 9

We call a fixed set of possible concepts as a hypothesis set, H.

Question : What is the difference between hypothesis set and concept
class?

15 / 46



Definition : Learning Problem

Definition 10(Learning Problem)

A learner considers a hypothesis set H, which might not necessarily
coincide with C . It receives a sample S = (x1, ..., xm) drawn i.i.d.
according to D as well as the labels (c(x1), ..., c(xm)), which are based on
a specific target concept c ∈ C to learn. Learning problem is a task to
use the labeled sample S to select a hypothesis hS ∈ H that has a small
error with respect to the concept c .

16 / 46



Definition : Learning Problem

Intuitively, we can assume that for c ∈ C is a goal (model) to learn, and
h ∈ H is a ’incomplete’ model.

Then how can we measure the error terms between h and c?
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Definition : Error

Definition 11(Generalized Error)

Given a hypothesis h ∈ H, a target concept c ∈ C , and an underlying
distribution D, the generalization error or risk of h is defined by

R(h) = P
x∼D

[h(x) 6= c(x)] = E
x∼D

[1h(x) 6=c(x)],

where 1ω is the indicator function of the event ω.

Definition 12(Empirical Error)

Given a hypothesis h ∈ H, a target concept c ∈ C , and a sample
S = (x1, ..., xm), the empirical error or empirical risk of h is defined by

R̂s(h) =
1

n

m∑
i=1

1h(x)6=c(x).
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Definition : PAC-Learning

The following introduces the Probably Approximately Correct (PAC)
learning framework.

Definition 13(PAC-Learning)

A concept class C is said to be PAC-learnable if there exists an algorithm
A and a polynomial function poly(·, ·, ·, ·) such that for any ε > 0 and
δ > 0, for all distributions D on X and for any target concept c ∈ C , the
following holds for any sample size m ≥ poly(1/ε, 1/δ, n, size(c)) :

P
S∼Dm

[R(hS) ≤ ε] ≥ 1− δ.

If A further runs in poly(1/ε, 1/δ, n, size(c)), then C is said to be
efficiently PAC-learnable. When such an algorithm A exists, it is called a
PAC-learning algorithm for C .
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Definition : PAC-Learning
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Definition : PAC-Learning

Example : Consider the case where the set of instances are points in the
plane, X = R2, and the concept class C is the set of all axis-aligned
rectangles lying in R2.

The learning problem consists of determining with small error a target
axis-aligned rectangle using the labeled training sample. We will show that
the concept class of axis-aligned rectangles is PAC-learnable.
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Definition : PAC-Learning

Figure: Target concept R and possible hypothesis R ′. Circles represent training
instances. A blue circle is a point labeled with 1, since it falls within the rectangle
R. Others are red and labeled with 0.
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Definition : PAC-Learning

Theorem 14

The concept class of axis-aligned rectangles is PAC-learnable.

Proof : To show that the concept class is PAC-learnable, we describe a
simple PAC-learning algorithm A. Given a labeled sample S , the algorithm
consists of returning the tightest axis-aligned rectangle R ′ = RS containing
the points labeled with 1.
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Definition : PAC-Learning

Proof(continued) :

Let R ∈ C be a target concept. Fix ε > 0. Let P[R] denote the probability
mass of the region defined by R, that is the probability that a point
randomly drawn according to D falls within R.

Since errors made by our algorithm can be due only to points falling inside
R, we can assume that P[R] > ε.
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Definition : PAC-Learning

Proof(continued) :

Now we can define four rectangular regions r1, r2, r3, and r4 along the sides
of R, each with probability at least ε/4. These regions can be constructed
by starting with the full rectangle R and then decreasing the size by
moving one side as much as possible while keeping a distribution mass of
at least ε/4.
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Definition : PAC-Learning

Proof(continued) :

Let l , r , b, and t be the four real values defining R : R = [l , r ]× [b, t].
Then, for example, the left rectangle r4 is defined by r4 = [l , s4]× [b, t],
with s4 = inf{s : P[[l , s]× [b, t]] ≥ ε/4}.
The probability of the region r4 = [l , s4]× [b, t] obtained from r4 by
excluding the rightmost side is at most ε/4. r1, r2, r3 and r1, r2, r3 are
defined in a similar way.
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Definition : PAC-Learning

Proof(continued) :

As a result, we can write

P
S∼Dm

[R(hS) > ε] ≤ P
S∼Dm

[∪4i=1{RS ∩ ri = ∅}]

≤
4∑

i=1

P
S∼Dm

[{RS ∩ ri = ∅}]

≤ 4(1− ε/4)m

≤ 4 exp(−mε/4),

from 1− x ≤ e−x for all x ∈ R.
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Definition : PAC-Learning

Proof(continued) :

Now, For any δ > 0, to ensure that P
S∼Dm

[R(hS) > ε] ≤ δ, we can impose

4 exp(−mε/4) ≤ δ ⇔ m ≥ 4

ε
log

4

δ
.

Thus, for any ε > 0 and δ > 0, if the sample size m is greater than 4
ε log 4

δ ,
then P

S∼Dm
[R(hS) > ε] ≤ δ, which proves that the concept class of

axis-aligned rectangles is PAC-learnable.
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Definition of Agnostic PAC-Learning

Now we generalize the definition of PAC-Learning.

Definition 15(Agnostic PAC-Learning)

Let H be a hypothesis set. A is an agnostic PAC-learning algorithm if
there exists a polynomial function poly(·, ·, ·, ·) such that for any ε > 0 and
δ > 0, for all distributions D over S = X × Y , the following holds for any
sample size m ≥ poly(1/ε, 1/δ, n, size(c)) :

P
S∼Dm

[R(hS)−min
h∈H

R(h) ≤ ε] ≥ 1− δ.

If A further runs in poly(1/ε, 1/δ, n), then it is said to be an efficient
agnostic PAC-learning algorithm.

Question : What is the difference between ’agnostic’ PAC-learning and
PAC-learning?
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Quick Review : VC Dimension

Definition 16(Growth Function)

The growth function ΠH : N→ N for a hypothesis set H is defined by:

∀m ∈ N,ΠH(m) = max
{x1,...xm}⊆X

∣∣∣{(h(x1), ..., h(xm)
)

: h ∈ H}
∣∣∣ .

Definition 17(VC Dimension)

The VC-dimension of a hypothesis set H is the size of the largest set that
can be shattered by H:

VCdim(H) = max {m : ΠH(m) = 2m}.

Do you remember the definition of ’shattered’?
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Quick Review : Sauer’s Lemma

Theorem 18(Sauer’s Lemma)

Let H be a hypothesis set with VCdim(H) = d . Then, for all m ∈ N, the
following inequality holds:

ΠH(m) ≤
d∑

i=0

(
m

i

)
Question : Sauer’s lemma suggests an ’upper bound’ of the generalized
error. But how?
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Quick Review : Sauer’s Lemma

The significance of Sauer’s lemma can be seen by the following theorem,
which remarkably shows that growth function only exhibits two types of
behavior: either VCdim(H) = d < +∞, in which case ΠH(m) = O(md),
or VCdim(H) = +∞, in which case ΠH(m) = 2m.

Theorem 19

Let H be a hypothesis set with VCdim(H) = d . Then for all m ≥ d ,

ΠH(m) ≤
(
em

d

)d

= O(md).
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Quick Review : Sauer’s Lemma

Proof : The proof begins by using Sauer’s lemma.

ΠH(m) ≤
d∑

i=0

(
m

i

)

≤
d∑

i=0

(
m

i

)(
m

d

)d−i

≤
m∑
i=0

(
m

i

)(
m

d

)d−i

=

(
m

d

)d m∑
i=0

(
m

i

)(
d

m

)i

=

(
m

d

)d
(

1 +
d

m

)m

≤
(
m

d

)d

ed .
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Upper Bound for the Generalization Error

Theorem 20

Let H be a family of functions taking values in {−1,+1} with
VC-dimension d . Then, for any δ > 0, with probability at least 1− δ, the
following holds for all h ∈ H:

R(h) ≤ R̂s(h) +

√
2d log em

d

m
+

√
log 1

δ

2m

In other words, the form of this generalization bound is

R(h) ≤ R̂s(h) + O

(√
log (m/d)

(m/d)

)
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Lower Bound for the Generalization Error

Until now, I presented an upper bound on the generalization error.

Then how about the lower bound? What if there does not exists ’enough
lower bound’ for any learning algorithms?

Big Picture : In some situation this really happens. In other words, I will
introduce the condition which is not agnostic PAC-learnable.
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Lower Bound for the Generalization Error

Theorem 21

Let H be a hypothesis set with VC-dimension d > 1. Then, for any m ≥ 1
and any learning algorithm A, there exists a distribution D over X × {0, 1}
such that:

P
S∼Dm

[
R(hS)− inf

h∈H
R(h) >

√
d

320m

]
≥ 1/64.

Equivalently, for any learning algorithm, the sample complexity verifies

m ≥ d

320ε2
.
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Lower Bound for the Generalization Error

Corollary 22

With an infinite(unlimited) VC-dimension, agnostic PAC-learning is not
possible.

Proof : The previous theorem shows that for any algorithm A(in the
non-realizable case), there exists a ’bad’ distribution over S = X × {0, 1}
such that the error of the hypothesis returned by A is a constant times√

d
m with some constant probability. The VC-dimension appears as a

critical quantity in learning in this general setting as well. In particular,
with an infinite VC-dimension, agnostic PAC-learning is not possible.
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Definition of Learning Problem

Let X be the input space. Let Y be the set of target values.

The learning problem is to find a hypothesis h ∈ H with small
generalization error

R(h) = P
(x ,y)∼D

[h(x) 6= y ] = E
(x ,y)∼D

[1h(x) 6=y ].
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Definition of PAC Learning

Definition(PAC-Learning)

A concept class C is said to be PAC-learnable if there exists an algorithm
A and a polynomial function poly(·, ·, ·, ·) such that for any ε > 0 and
δ > 0, for all distributions D on X and for any target concept c ∈ C , the
following holds for any sample size m ≥ poly(1/ε, 1/δ, n, size(c)) :

P
S∼Dm

[R(hS) ≤ ε] ≥ 1− δ.

If A further runs in poly(1/ε, 1/δ, n, size(c)), then C is said to be
efficiently PAC-learnable. When such an algorithm A exists, it is called a
PAC-learning algorithm for C .
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Definition of PAC Learning

Theorem

The concept class of axis-aligned rectangles is PAC-learnable.

Main idea of proof : We can construct a function which grows slower
than polynomial such that it satisfies the below condition :

P
S∼Dm

[R(hS) > ε] ≤ δ ⇔ P
S∼Dm

[R(hS) ≤ ε] ≥ 1− δ.
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Definition of Agnostic PAC-Learning

Definition(Agnostic PAC-Learning)

Let H be a hypothesis set. A is an agnostic PAC-learning algorithm if
there exists a polynomial function poly(·, ·, ·, ·) such that for any ε > 0 and
δ > 0, for all distributions D over S = X × Y , the following holds for any
sample size m ≥ poly(1/ε, 1/δ, n, size(c)) :

P
S∼Dm

[R(hS)−min
h∈H

R(h) ≤ ε] ≥ 1− δ.

If A further runs in poly(1/ε, 1/δ, n), then it is said to be an efficient
agnostic PAC-learning algorithm.
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Condition for Agnostic PAC-Learning is Not Possible

Definition(VC dimension)

The VC-dimension of a hypothesis set H is the size of the largest set that
can be shattered by H:

VCdim(H) = max {m : ΠH(m) = 2m}.

Theorem

With an infinite(unlimited) VC-dimension, agnostic PAC-learning is not
possible.
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Thank you.
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