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Quick Review : -6 Argument (Calculus | / Analysis 1)

Definition 1
A function f defined on a set X of real numbers has the limit L at xp, i.e.,

lim f(x) =1L,

X—>X0

if, for any € > 0, there exists 9 > 0 such that

|f(x) — L| <€, whenever x € X and 0 <|x — xo| < 4.
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Quick Review : -6 Argument (Calculus | / Analysis 1)

Why e-0 argument is important?
Because it provides § for every € > 0, regardless of the magnitude of .

In other words, we can think that there exists a function f : € — § such
that it satisfies the condition.
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Quick Review : Probability and Statistics

Definition 2

@ The set S of all possible outcomes of an experiment a way that in
each trial of the experiment one and only one of the outcomes
(events) in the set will occur, we call the set S a sample space for
the experiment. Each element S is called a simple outcome, or
simple event.

@ An event E is defined to be any subset of S (including the empty set
and the sample space S). Event E is a simple event if it contains
only one element and a compound event if it contains more than
one element.

@ We say that an event E occurs if any of the simple events in E
occurs.
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Quick Review : Probability and Statistics

Definition 3
Given a probability assignment for the simple events in a sample space S,
we define the probability of an arbitrary event E, denoted by P(E), as
follows:
o If E is the empty set, then P(E) = 0.
o If E is a simple event, i.e. E = {¢;}, then P(E) = P(e;) as defined
previously.
o If E is a compound event, then P(E) is the sum of the probabilities of
all the simple events in E.

o If E is the sample space S, then P(E) = P(S) = 1.
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Quick Review : Probability and Statistics

Example : In a family with 3 children, excluding multiple births, what is
the probability of having exactly 2 girls? Assume that a boy is as likely as
a girl at each birth.

@ First we determine the sample space S:
S ={GGG, GGB, GBG, BGG, GBB, BGB, BBG, BBB}

@ Since a boy is as likely as a girl at each birth, each of the 8 outcomes
in S is equally likely; so each outcome has probability %.

@ There exists only 3 cases, GGB, GBG, BGG. Thus the probability of
having exactly 2 girls are % X 3= %.



Quick Review : Probability and Statistics

Definition 4
The expected value, also called the expectation or mean, of a random

variable is its average value weighted by its probability distribution.

The expected value or mean of a random variable X is written as E(X).




Quick Review : Probability and Statistics

Example : What is the expectation value of rolling a 6-sided die?
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Quick Review : Probability and Statistics

Example : What is the expectation value of rolling a 6-sided die?

Answer : The mean of a discrete random variable is defined as

E(X) = xp(x),
xeX

where X ={1,2,3,4,5,6}. Therefore,

1 2 3 4 5 6
E(X):6+6+6+6+6+6:3.5.
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Basic Definitions

Definition 5
We denote by X the set of all possible examples or instances. X is also
sometimes referred to as the input space.

Definition 6
The set of all possible labels or target values is denoted by Y.

12 /46



Basic Definitions

To make the problems easier, we will limit ourselves to the case where Y is
reduced to two labels,

Y = {0,1}.

which corresponds to the so-called binary classification.
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Basic Definitions

Definition 7
A concept c : X — Y is a mapping from X to Y.

Definition 8

A concept class is a set of concepts we may wish to learn and is denoted
by C.
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Basic Definitions

We assume that examples are independently and identically distributed
(i.i.d.) according to some fixed but unknown distribution D.

Definition 9

We call a fixed set of possible concepts as a hypothesis set, H.

Question : What is the difference between hypothesis set and concept
class?
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Definition : Learning Problem

Definition 10(Learning Problem)

A learner considers a hypothesis set H, which might not necessarily
coincide with C. It receives a sample S = (xi, ..., Xm) drawn i.i.d.
according to D as well as the labels (¢(x1), ..., ¢(xm)), which are based on
a specific target concept ¢ € C to learn. Learning problem is a task to
use the labeled sample S to select a hypothesis hs € H that has a small
error with respect to the concept c.
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Definition : Learning Problem

Intuitively, we can assume that for ¢ € C is a goal (model) to learn, and
h € H is a 'incomplete’ model.
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Definition : Learning Problem

Intuitively, we can assume that for ¢ € C is a goal (model) to learn, and
h € H is a 'incomplete’ model.

Then how can we measure the error terms between h and c¢?
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Definition : Error
Definition 11(Generalized Error)

Given a hypothesis h € H, a target concept ¢ € C, and an underlying
distribution D, the generalization error or risk of h is defined by

R(h) = XINP’D[/?(X) #c(x)] = XgD[lh(x);éc(X)]v

where 1, is the indicator function of the event w.

Definition 12(Empirical Error)

Given a hypothesis h € H, a target concept ¢ € C, and a sample
S = (x1,...,Xm), the empirical error or empirical risk of h is defined by

A i
Rs(h) = ; Z 1h(x)7éc(x)-
i=1
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Definition : PAC-Learning

The following introduces the Probably Approximately Correct (PAC)
learning framework.

Definition 13(PAC-Learning)

A concept class C is said to be PAC-learnable if there exists an algorithm
A and a polynomial function poly(-,-,-,-) such that for any ¢ > 0 and

6 > 0, for all distributions D on X and for any target concept ¢ € C, the
following holds for any sample size m > poly(1/e,1/4, n, size(c)) :

P [R(hs) <€ >1-6.

LB [R(hs) < >

If A further runs in poly(1/e,1/0, n,size(c)), then C is said to be
efficiently PAC-learnable. When such an algorithm A exists, it is called a
PAC-learning algorithm for C.
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Definition : PAC-Learning

{

Hypothesis

Learning Algorithm H:X>Y
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Definition : PAC-Learning

Example : Consider the case where the set of instances are points in the

plane, X = R2, and the concept class C is the set of all axis-aligned
rectangles lying in R?.
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Definition : PAC-Learning

Example : Consider the case where the set of instances are points in the
plane, X = R2, and the concept class C is the set of all axis-aligned

rectangles lying in R?.

The learning problem consists of determining with small error a target
axis-aligned rectangle using the labeled training sample. We will show that
the concept class of axis-aligned rectangles is PAC-learnable.
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Definition : PAC-Learning
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Figure: Target concept R and possible hypothesis R’. Circles represent training
instances. A blue circle is a point labeled with 1, since it falls within the rectangle
R. Others are red and labeled with 0.
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Definition : PAC-Learning

Theorem 14
The concept class of axis-aligned rectangles is PAC-learnable.
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Definition : PAC-Learning

Theorem 14

The concept class of axis-aligned rectangles is PAC-learnable.

Proof : To show that the concept class is PAC-learnable, we describe a
simple PAC-learning algorithm A. Given a labeled sample S, the algorithm
consists of returning the tightest axis-aligned rectangle R’ = Rs containing
the points labeled with 1.
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Definition : PAC-Learning

Proof(continued) :
Let R € C be a target concept. Fix € > 0. Let P[R] denote the probability
mass of the region defined by R, that is the probability that a point

randomly drawn according to D falls within R.

Since errors made by our algorithm can be due only to points falling inside
R, we can assume that P[R] > e.
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Definition : PAC-Learning

Proof(continued) :

Now we can define four rectangular regions r1, r», r3, and rq along the sides
of R, each with probability at least ¢/4. These regions can be constructed
by starting with the full rectangle R and then decreasing the size by
moving one side as much as possible while keeping a distribution mass of
at least €/4.
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Definition : PAC-Learning

Proof(continued) :

Let /,r, b, and t be the four real values defining R: R =/, r] x [b, t].
Then, for example, the left rectangle ry is defined by ry = [/, s4] X [b, t],
with s; = inf{s : P[[/,s] x [b, t]] > ¢/4}.

The probability of the region 7z = [/, sa] x [b, t] obtained from r4 by
excluding the rightmost side is at most €/4. ri, r2, r3 and 71,72, 13 are
defined in a similar way.
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Definition : PAC-Learning

Proof(continued) :

As a result, we can write

SNPDm[R(hS) > < SNPDm[Uj}:l{RS Nri=0}]

4
< ZSNPDm[{RS Nr =0}
i=1

<4(1—€/4)M
< 4exp(—m6/4),

from 1 — x < e for all x € R.
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Definition : PAC-Learning

Proof(continued) :
Now, For any § > 0, to ensure that < IP’Dm[R(hs) > €] < §, we can impose

4

4
4exp(—me/4) <6< m> —log 5
€

. . . 4 4
Thus, for any € > 0 and 0 > 0, if the sample size m is greater than ? log 3,

then s ]P;Jm[R(hS) > ¢] < 9§, which proves that the concept class of

axis-aligned rectangles is PAC-learnable. [
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Definition of Agnostic PAC-Learning

Now we generalize the definition of PAC-Learning.

Definition 15(Agnostic PAC-Learning)

Let H be a hypothesis set. A is an agnostic PAC-learning algorithm if
there exists a polynomial function poly(-,-, -, -) such that for any ¢ > 0 and
0 > 0, for all distributions D over S = X X Y, the following holds for any
sample size m > poly(1/€, 1/, n, size(c)) :

— mi <e>1-—o.
B [R(hs) —minR(h) < 216

If A further runs in poly(1/e,1/0, n), then it is said to be an efficient
agnostic PAC-learning algorithm.

30/ 46



Definition of Agnostic PAC-Learning

Now we generalize the definition of PAC-Learning.

Definition 15(Agnostic PAC-Learning)

Let H be a hypothesis set. A is an agnostic PAC-learning algorithm if
there exists a polynomial function poly(-,-, -, -) such that for any ¢ > 0 and
0 > 0, for all distributions D over S = X X Y, the following holds for any
sample size m > poly(1/€, 1/, n, size(c)) :

— mi <e>1-—o.
B [R(hs) —minR(h) < 216

If A further runs in poly(1/e,1/0, n), then it is said to be an efficient
agnostic PAC-learning algorithm.

Question : What is the difference between 'agnostic’ PAC-learning and
PAC-learning?
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Quick Review : VC Dimension

Definition 16(Growth Function)
The growth function 5 : N — N for a hypothesis set H is defined by:

Vm € N, My (m) = {Xlrr.'r_i)(}gx‘{(h(xl), o h(xm)) s h € H}‘ .

Definition 17(VC Dimension)

The VC-dimension of a hypothesis set H is the size of the largest set that
can be shattered by H:

VCdim(H) = max{m : NMy(m) =2"}.

Do you remember the definition of 'shattered’?
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Quick Review : Sauer’'s Lemma

Theorem 18(Sauer's Lemma)

Let H be a hypothesis set with VCdim(H) = d. Then, for all m € N, the
following inequality holds:

Mi(m) < é (7)

Question : Sauer's lemma suggests an 'upper bound’ of the generalized
error. But how?
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Quick Review : Sauer’'s Lemma

The significance of Sauer's lemma can be seen by the following theorem,
which remarkably shows that growth function only exhibits two types of
behavior: either VCdim(H) = d < +o0, in which case My (m) = O(m9),
or VCdim(H) = o0, in which case MNy(m) = 2".

Theorem 19

Let H be a hypothesis set with VCdim(H) = d. Then for all m > d,

My(m) < (Fm)d — O(m).
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Quick Review : Sauer’'s Lemma

Proof : The proof begins by using Sauer’'s lemma.



Upper Bound for the Generalization Error

Theorem 20

Let H be a family of functions taking values in {—1,+1} with
VC-dimension d. Then, for any § > 0, with probability at least 1 — J, the
following holds for all h € H:

. 2d log & log %
R(h) < R.(h & a
(h) < Rs(h) +/ - +14 om

In other words, the form of this generalization bound is

R(h) < Rs(h) + o( —'og(m/d)>

(m/d)
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Lower Bound for the Generalization Error

Until now, | presented an upper bound on the generalization error.
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Lower Bound for the Generalization Error

Until now, | presented an upper bound on the generalization error.

Then how about the lower bound? What if there does not exists 'enough
lower bound’ for any learning algorithms?

Big Picture : In some situation this really happens. In other words, | will
introduce the condition which is not agnostic PAC-learnable.
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Lower Bound for the Generalization Error

Let H be a hypothesis set with VC-dimension d > 1. Then, for any m > 1
and any learning algorithm A, there exists a distribution D over X x {0,1}

such that:
P (R(hs) — inf R(h) > /—2—| > 1/64
spm| NS T ey 320m| ~ '

Equivalently, for any learning algorithm, the sample complexity verifies

m >

320¢2° )
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Lower Bound for the Generalization Error

With an infinite(unlimited) VC-dimension, agnostic PAC-learning is not
possible.




Lower Bound for the Generalization Error

With an infinite(unlimited) VC-dimension, agnostic PAC-learning is not
possible.

Proof : The previous theorem shows that for any algorithm A(in the
non-realizable case), there exists a 'bad’ distribution over S = X x {0,1}
such that the error of the hypothesis returned by A is a constant times

\/% with some constant probability. The VC-dimension appears as a

critical quantity in learning in this general setting as well. In particular,
with an infinite VC-dimension, agnostic PAC-learning is not possible. [
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Definition of Learning Problem

Let X be the input space. Let Y be the set of target values.

The learning problem is to find a hypothesis h € H with small
generalization error

R(W)= P [h(x = B [lyas]
(h) (X’y)ND[ (x) # vl (X,y)ND[ h(x)y]
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Definition of PAC Learning

Definition(PAC-Learning)

A concept class C is said to be PAC-learnable if there exists an algorithm
A and a polynomial function poly(-,-,-,-) such that for any ¢ > 0 and

6 > 0, for all distributions D on X and for any target concept ¢ € C, the
following holds for any sample size m > poly(1/¢,1/6, n, size(c)) :

P [R(hs) <el>1-6.

S [R(hs) < d >

If A further runs in poly(1/e,1/0, n,size(c)), then C is said to be
efficiently PAC-learnable. When such an algorithm A exists, it is called a
PAC-learning algorithm for C.

V.
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Definition of PAC Learning

The concept class of axis-aligned rectangles is PAC-learnable. \

Main idea of proof : We can construct a function which grows slower
than polynomial such that it satisfies the below condition :

< <e>1-0.
SN]PI’Dm[R(hS) >el <0e SNIP’Dm[R(hS) <e€¢>1-9§
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Definition of Agnostic PAC-Learning

Definition(Agnostic PAC-Learning)

Let H be a hypothesis set. A is an agnostic PAC-learning algorithm if
there exists a polynomial function poly(:,-, -, -) such that for any ¢ > 0 and
0 > 0, for all distributions D over S = X x Y, the following holds for any
sample size m > poly(1/e, 1/, n, size(c)) :

—mi <e>1-o.
SN]PZ)m[R(hS) min R(h)<e¢>1-4

If A further runs in poly(1/e,1/4, n), then it is said to be an efficient
agnostic PAC-learning algorithm.
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Condition for Agnostic PAC-Learning is Not Possible

Definition(VC dimension)

The VC-dimension of a hypothesis set H is the size of the largest set that
can be shattered by H:

VCdim(H) = max{m : NMy(m) =2"}.

With an infinite(unlimited) VC-dimension, agnostic PAC-learning is not
possible.
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Thank you.
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