School of Computing

Uncovertient Compute

Martin Ziegler

KAIST

CS492A in Fall 2024

§0 Introduction

Unconventional Computing M. Ziegler

- Administrative Matters
- Student Topics
- History of Computing
- Moore's Law
- Power of Abstraction
- Principles+Models of Computing

§0 Student Topics

- Artificial Chemistry + Reaction-Diffusion
 + Membrane + P Computing
- DNA + Molecular + Bacterial + Cellular Computing
- Slime Mold Computing
- Reservoir Computing
- Amorphous Computing
- Social Algorithms
- Inductive Turing Machines (req. CS422!)
- Unconventional Problems

§0 History of Computing

- Abacus (ca.2500 BC)
- Antikythera mechanism (ca.100 BC, solar system model)
- Blaise's *Pascaline* (1840ies)

Unconventional

Computing

M. Ziegler

• Babbage Analytical Engine ("1837")

§0 History of Computing

- 1936: Alan Turing publishes "On Computable Numbers, with application to *Entscheidungsproblem*"
- 1941: Konrad Zuse's Z3 becomes operational

- a) <u>Define</u> mathematical model of "digital computer"
- b) Demonstrate fundamental <u>capabilities</u> (*universal TM*)
- c) Prove ultimate <u>limitations</u> (*Halting Problem*)
- d) Guide to/wards Engineers/Implementation

§0 History of Computing

Unconventional Computing

- d) Guided by Engineers/Implementation
- a) Define mathematical model of "analog computer"
- b) Show fundamental <u>capabilities</u> (universal GPAC)
- c) Prove ultimate <u>limitations</u> (Γ Function, Riemann ζ)
- 1931: Vannevar Bush's general-purpose analog computer operational at MIT
- 1941: Claude Shannon publishes

"Mathematical Theory of the Differential Analyzer"

SOURCE: RAY KURZWEIL, "THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY", P.67, THE VIKING PRESS, 2006. DATAPOINTS BETWEEN 2000 AND 2012 REPRESENT BCA ESTIMATES.

§0 Power of Abstraction

Unconventional Computing M. Ziegler

§0 Principles of Computing

Unconventional Computing M. Ziegler

- Few and simple "basic" primitives
 - (operations, gates, cells etc.)
- Combine to realize "complex" behavior/functionality

§0 Model of Computing

• Few and simple "*basic*" primitives

(operations, gates, cells etc.)

<u>Combine</u> to realize "*complex*" behavior/functionality

Rigorously <u>defines</u>: said "basic" primitives and rules, how they can/not be combined with resulting behavior/functionality ("syntax and semantics")

§0 Conclusion

- Administrative Matters
- Student Topics
- History of Computing
- Moore's Law
- Power of Abstraction
- Principles+Models of Computing