

S4 Quantum Computing Computing

- Recap: Experimental Physical Evidence
- Math Background: States and Operators
- Qubits and Primitive Gates
- Quantum Circuit for

§4 Recap: Experimental Physics

Unconventional **Computing** M. Ziegler

And so is light!

Robert Millikan "Oil drop" (1909): Electrons are particles! Claus Jönsson (1959): And so are electrons!

Thomas Young (1801): Light is a wave!

S4 Basic Quantum Mechanics Computing Basic

Unconventional **Computing**

- \blacksquare NOT Dath Integ many strategies and the strategies of the • NOT Path Integral (Richard Feynman)
- Thomas Y (Ducan Foun \mathcal{O} and \mathcal{O} and \mathcal{O} • NOT Quantum Field Theory (Dyson, Feynman, Schwinger, Tomonaga)
- NOT Relativistic Quantum Mechanics

Unconventional §4 Math of Quantum Mechanics Computing M. Ziegler

Hilbert Space H

normal vectors $ψ, ψ' \in H$

III observable \mathcal{A} , \mathcal{A}' of S

IV measurement of A

V time evolution $s(0) \rightarrow s(t)$

Hermit. operator A, A' on H

> eigenvalue a of A

Schrödinger Eq. $i\hbar$ d/dt $\psi(t) = H \psi(t)$

MATHEMATICAL FOUNDATIONS OF QUANTUM MECHANICS

By John von Neumann

translated from the German edition by **ROBERT T. BEYER**

§4 Axioms of Quantum Mechanics

Unconventional **Computing** M. Ziegler

Ia. To any (isolated) physical system S corresponds a Hilbert space H called the state space.

Ib. The state space of a system S composed from sub-systems \mathcal{S}_j is the *tensor product* $\,\mathcal{H} = \otimes_j \, \mathcal{H}^+_j$ of the state spaces associated with components S_i .

IIa. A pure state $s=s(t)$ of S at time t corresponds to a unit (=norm1) vector $\psi = \psi(t) \in \mathcal{H}$.

IIb. A statistical ensemble (=mix) of pure states/vectors $s_{k}\!/\!\psi_{k}$ with weights $w_k \in [0,1]$ corresponds to a *density* (=pos. semi.trace1) operator $\mathsf{p}=\Sigma_k\,w_k\vert \psi_k\!\rangle\!\langle \psi_k\vert$

translated from the German edition by **ROBERT T. BEYER**

§4 Axioms of Quantum Mechanics

Unconventional **Computing** M. Ziegler

III. A physical observable $\mathcal A$ on S corresponds to a Hermitian operator A on H . Performing a measurement of A will produce some eigenvalue of A .

unit eigenvector of A to eigenvalue a other form <u>a unit case a is <mark>uiscrete non-degenera</mark></u> **IVa.** When S is in pure state ψ , measuring A produces eigenvalue a with **probability** $\left[\langle \psi_a|\psi\rangle|^2\right]$, where ψ_a is a unit eigenvector of \boldsymbol{A} to eigenvalue \boldsymbol{a} $-$ in case a is discrete non-degenerate. Other formula when a is degenerate/

 TVh . When C is in mixed state with de pure states/vectors s^k /ψ^k with weights $\langle w \mid \mathbf{0} | w \rangle$ where \mathbf{w} is a unit eigenvector. $\frac{1}{2}$ and $\frac{1}{2}$ in case *a* is discrete nor **IVb.** When S is in *mixed* state with density ρ , measuring $\mathcal A$ produces eigenvalue a with probability $\langle \psi_a | \mathbf{p} | \psi_a \rangle$, where ψ_a is a unit eigenvector of A to eigenvalue $a -$ in case a is discrete non-degenerate. continuous

§4 Axioms of Quantum Mechanics

Unconventional **Computing** M. Ziegler

operator /

III. A physical observable $\mathcal A$ on S corresponds to a Hermitian operator A on H . Performing a measurement of A will produce some eigenvalue of A .

IVa. When S is in pure state ψ , measuring A produces eigenvalue a with **probability** $|\langle \psi_a | \psi \rangle|^2$, where ψ_a is a unit eigenvector of A to eigenvalue a Hamilton

 $-$ in case a is discrete non-degenerate.

IIa. A pure state $s=s(t)$ of S at time t corresponds to a unit (=norm1) vector $\psi = \psi(t) \in \mathcal{H}$. observable "energy" (III)

V. The time evolution of a pure state $\psi(0) \rightarrow \psi(t) \in H$ is described by Schrödinger's Equ.n: $i\hbar d/dt$ $\psi(t) = H$

Unconventional **Computing** S4 Qubits and Quantum Gates Computing

Example: $\mathcal{H}_i = \mathbb{C}^2$ (qubit), ortho-basis $(0,1) =: |0\rangle$ and $(1,0) =: |1\rangle$

 $\otimes^n \mathbb{C}^2$ (*n* qubits) has dimension 2^n with ortho-basis $|0...0\rangle$... $|1...1\rangle$

Recall Ib. The state space of a system S composed from sub-systems \mathcal{S}_j is the *tensor product* $\,\mathcal{H} = \otimes_j \, \mathcal{H}^+_j$ of the state spaces associated with components S_i .