

§4 Quantum Computing

Unconventional Computing M. Ziegler

- Recap: Experimental Physical Evidence
- Math Background: States and Operators
- Qubits and Primitive Gates
- Quantum Circuit for

§4 Recap: Experimental Physics

Unconventional Computing M. Ziegler

And so is *light*!

Robert Millikan "Oil drop" (1909): Electrons are *particles*! Claus Jönsson (1959): And so are *electrons!*

Thomas Young (1801): Light is a *wave!*

§4 **Basic** Quantum Mechanics

Unconventional Computing M. Ziegler

- NOT Path Integral (Richard Feynman)
- NOT Quantum Field Theory (Dyson, Feynman, Schwinger, Tomonaga)
- NOT *Relativistic* Quantum Mechanics

§4 Math of Quantum Mechanics Computing M. Ziegler

<u>Math</u>

Hilbert Space $\mathcal H$

normal vectors $\psi, \psi' \in \mathcal{H}$

III observable \mathcal{A} , \mathcal{A}' of S

 $\begin{array}{c} \mathbf{IV} \text{ measurement} \\ \text{ of } \mathcal{A} \end{array}$

V time evolution $s(0) \rightarrow s(t)$

Hermit. operator A, A' on \mathcal{H}

eigenvalue *a* of *A*

Schrödinger Eq. $i\hbar d/dt \psi(t) = H\psi(t)$ MATHEMATICAL FOUNDATIONS OF QUANTUM MECHANICS

By John von Neumann

translated from the German edition by ROBERT T. BEYER

§4 Axioms of Quantum Mechanics

Unconventional Computing M. Ziegler

Ia. To any (isolated) physical system S corresponds a Hilbert space \mathcal{H} called the *state space*.

Ib. The state space of a system *S* composed from sub-systems S_j is the *tensor product* $\mathcal{H} = \bigotimes_j \mathcal{H}_j$ of the state spaces associated with components S_j .

IIa. A *pure* state S=S(t) of S at time t corresponds to a *unit* (=norm**1**) vector $\psi = \psi(t) \in \mathcal{H}$.

IIb. A statistical *ensemble* (=mix) of pure states/vectors S_k/ψ_k with weights $w_k \in [0;1]$ corresponds to a *density* (=pos. semi.trace**1**) *operator* $\rho = \sum_k w_k \cdot |\psi_k\rangle\langle\psi_k|$

translated from the German edition by

ROBERT T. BEYER

§4 Axioms of Quantum Mechanics

Jnconventional Computing M. Ziegler

III. A physical observable \mathcal{A} on S corresponds to a Hermitian operator A on \mathcal{H} . Performing a measurement of \mathcal{A} will produce **some** eigenvalue of A.

IVa. When *S* is in *pure* state ψ , measuring \mathcal{A} produces eigenvalue *a* with **probability** $[\langle \psi_a | \psi \rangle]^2$, where ψ_a is a unit eigenvector of *A* to eigenvalue *a* Other formula – in case *a* is discrete non-degenerate. When *a* is degenerate/ continuous

IVb. When *S* is in *mixed* state with density ρ , measuring \mathcal{A} produces eigenvalue *a* with **probability** $\langle \psi_a | \rho \psi_a \rangle$, where ψ_a is a unit eigenvector of *A* to eigenvalue *a* — in case *a* is discrete non-degenerate.

§4 Axioms of Quantum Mechanics

Unconventional Computing M. Ziegler

operator /

observable

III. A physical observable \mathcal{A} on S corresponds to a Hermitian operator A on \mathcal{H} . Performing a measurement of \mathcal{A} will produce **some** eigenvalue of A.

IVa. When *S* is in *pure* state ψ , measuring \mathcal{A} produces eigenvalue *a* with **probability** $|\langle \psi_a | \psi \rangle|^2$, where ψ_a is a unit eigenvector of *A* to eigenvalue *a* Hamilton

— in case a is discrete non-degenerate.

IIa. A pure state S=S(t) of S at time t corresp "energy" to a unit (=norm1) vector $\psi = \psi(t) \in \mathcal{H}$. (**III**)

V. The time evolution of a *pure* state $\psi(0) \rightarrow \psi(t) \in \mathcal{H}$ is described by Schrödinger's Equ.n: $i\hbar d/dt \psi(t) = \mathcal{H}\psi(t)$

§4 Qubits and Quantum Gates Computing M. Ziegler

Example: $\mathcal{H}_j = \mathbb{C}^2$ (qubit), ortho-basis $(0,1) =: |\mathbf{0}\rangle$ and $(1,0) =: |\mathbf{1}\rangle$

 $\otimes^n \mathbb{C}^2$ (*n* qubits) has dimension 2^n with ortho-basis $|0...0\rangle$... $|1...1\rangle$

Recall Ib. The state space of a system *S* composed from sub-systems S_j is the *tensor product* $\mathcal{H} = \bigotimes_j \mathcal{H}_j$ of the state spaces associated with components S_j .